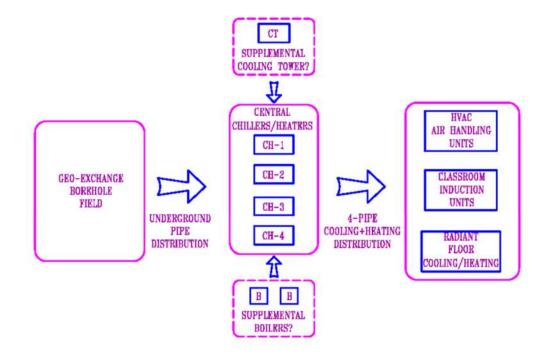
05.31.2018

BELMONT HIGH SCHOOL HVAC SYSTEM REVIEW

PERKINS+WILL

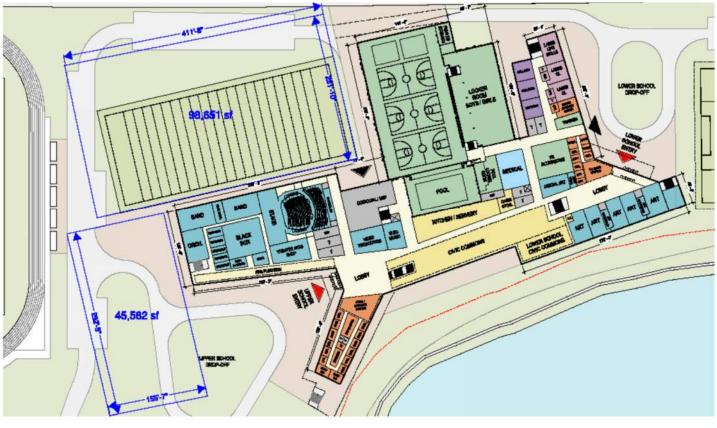
01 / Mechanical System Review
02 / Energy Comparison
03 / Life Cycle Costing
04 / Comparrison Summary

HVAC SYSTEM GOALS


- □ ALL SYSTEMS TO EXCEED MASS ENERGY CODE BY 20%
- MINIMIZE ANNUAL ENERGY COST & FOSSIL FUEL EMISSIONS
- EXPLORE ZERO NET ENERGY SITE

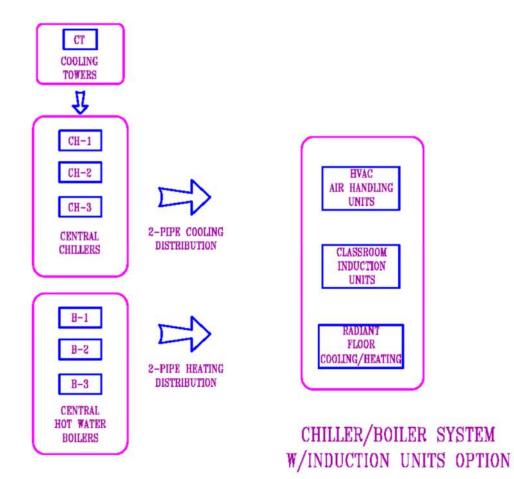
GEO-EXCHANGE SYSTEM WITH INDUCTION UNITS

GEO-EXCHANGE SYSTEM BASE - NET ZERO OPTION



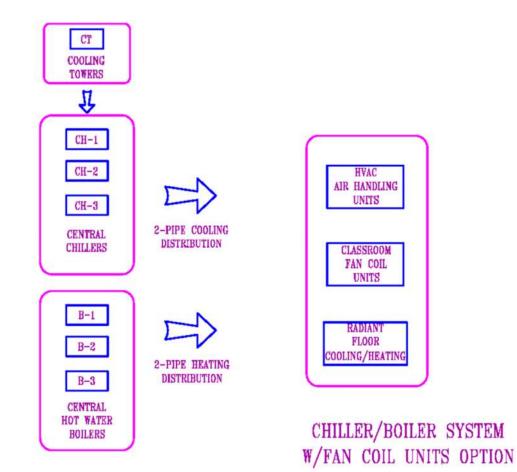
MAY 31, 2018

GEO-EXCHANGE SYSTEM WITH INDUCTION UNITS


GEO-EXCHANGE BOREFIELD AREA

CHILLER / BOILER SYSTEM WITH INDUCTION UNITS

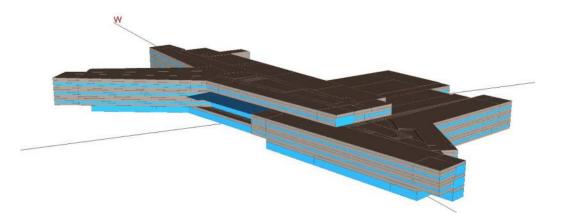
PERKINS+WILL


CHILLER / BOILER SYSTEM WITH FAN COIL UNITS

- □ HIGH EFFICIENCY WATER COOLED CHILLERS WITH COOLING TOWERS
- GAS-FIRED CONDENSING HOT WATER BOILERS
- □ VARIABLE SPEED PUMPS
- □ FAN COIL UNITS IN CLASSROOMS
- □ RADIANT FLOOR HEATING AND COOLING
- VARIABLE AIR VOLUME SINGLE ZONE AIR HANDLING UNITS FOR AUDITORIUM, STAGE, FIELD HOUSE, BLACK BOX
- VARIABLE AIR VOLUME HEAT RECOVERY OUTSIDE AIR UNITS SERVING CLASSROOMS, MEDIA SPACES, INNOVATION SPACES
- CO₂ DEMAND CONTROL VENTILATION IN CLASSROOMS AND SPACES WITH HIGH OCCUPANT DENSITY
- OCCUPANCY SENSORS FOR DAY-TIME TEMPERATURE SET BACK AND VENTILATION REDUCTION

CHILLER / BOILER SYSTEM WITH FAN COIL UNITS

PERKINS+WILL



MAY 31, 2018

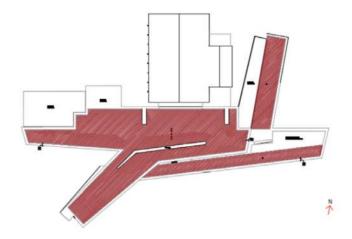
ENERGY COMPARISON

HVAC System Options:

- Proposed (Geothermal & Induction Units
- Option 1 (Chiller/Boiler & Induction Units)
- Option 2 (Chiller/Boiler & Fan Coils)

PERKINS+WILL

SUMMARY - ENERGY AND COST	TOTAL CONSUMPTION (MMBTU)	EUI (kbtu/sf/y r)	SITE ENERG Y SAVING S (%)	ESTIMATE D ANNUAL UTILITY COST (\$)	UTILITY COST SAVING (%)	ANNUAL UTILITY COST DELTA vs. PREFERRE D/ PROPOSED DESIGN
ASHRAE 90.1-2013 BASELINE	28,039	58.42	-	\$697,770	-	-
PROPOSED (GEOTHERMAL / INDUCTION UNITS)	12,490	26.02	55%	\$539,431	23%	-
PROPOSED - OPT 1 (CHILLER/BOILER/ INDUCT)	15,494	32.28	45%	\$563,248	19%	\$23,817
PROPOSED - OPT 2 (CHILLER/BOILER/ FAN COIL)	15,894	33.11	43%	\$582,901	16%	\$43,469


PERKINS+WILL AKE ip

PV PRODUCTION ON ROOF

- Possible PV locations have been shown in red. Approximately 3,394 Panels, 95,900 SF
- Panels would be mounted in bi-fold manner – 'east' & 'west'
- SD estimated roof energy generation based on a 340W PV panel is 1,190,650 kWh

PV REQUIREMENTS

	Total Consumptio n (MMBTU)	Equivalent kWh	% Offset by 95,900 SF of Panels on Roof	Energy Remainin g	# of Panels	Site PV Canopy Area Required (SF)
ASHRAE 90.1-2013 BASELINE	28,039	8,217,420	14%	7,026,764	17,061	482,045
PROPOSED (GEOTHERMAL / INDUCTION UNITS)	12,490	3,660,458	32%	2,469,802	5,997	169,431
PROPOSED - OPT 1 (CHILLER/BOILER/I NDUCT)	15,494	4,540,843	26%	3,350,187	8,134	229,827
PROPOSED - OPT 2 (CHILLER/BOILER/ FAN COIL)	15,894	4,658,072	26%	3,467,416	8,419	237,869

PERKINS+WILL AKE ip

PV PRODUCTION ON ROOF

- Overall, PV on the roof would offset roughly 14% of the baseline building's annual energy
- PV on the roof would offset roughly 25 32% of the improved HVAC cases.
- To get the Geothermal Case to Net Zero, an additional approximately 6,000 panels would need to be mounted on the site. (This does not include any contingency)
- The purple area shows how much more PV would be needed.

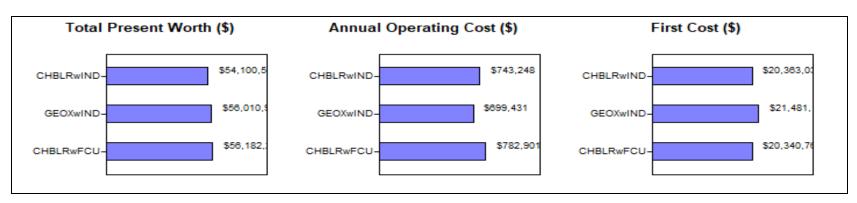
MAY 31, 2018

NZEB:A	Renewable energy harvested within the building footprint
NZEB:B	Renewable energy harvested within the building footprint and on the site
NZEB:C	Renewable energy harvested within the building footprint, on site or by renewable sources imported to the site
NZEB:D	Renewable energy harvested within building footprint and/or on site and supplemented by purchased renewable energy certificates


Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options, NREL, June 2010

PERKINS+WILL AKF ip

SITE PLAN WITH ESTIMATED PV REQUIRED TO ACHIEVE NET ZERO ENERGY



Life Cycle Cost Analysis for HVAC Options

30 year life-cycle cost analysis for three HVAC system options.				
Type of AnalysisPublic Sector Lifecycle	e Analysis			
Type of Design Alternatives Inc	dependent			
Length of Analysis				
Discount Rate				

Table 1. Executive Summary

Economic Criteria	Best Design Case for Each Criteria	Value (\$)
Lowest Total Present Worth	Chiller/ Boiler with Induction	\$54,100,534
Lowest Annual Operating Cost	Geo-Exchange with Induction	\$699,431
Lowest First Cost	Chiller/ Boiler with Fan Coil Units	\$20,340,759

Table 2. Design Cases Ranked by Total Present Worth

Design Case Name	Design Case	Total Present	Annual Operating	First Cost (\$)
	Short Name	Worth (\$)	Cost (\$/yr)	
Chiller/ Boiler with Induction	CHBLRwIND	\$54,100,534	\$743,248	\$20,363,034
Geo-Exchange with Induction	GEOXwIND	\$56,010,898	\$699,431	\$21,481,139
Chiller/ Boiler with Fan Coil Units	CHBLRwFCU	\$56,182,200	\$782,901	\$20,340,759

SYSTEM PROS AND CONS

SYSTEMS	GEO-EXCHANGE w/INDUCTION	CHILLER/BOILER w/INDUCTION	CHILLER/BOILER w/FAN COIL UNITS	
PROS	HIGHEST EFFICIENCY COOLING AND HEATING	HIGH EFFICIENCY COOLING AND HEATING	HIGH EFFICIENCY COOLING & HEATING	
	LOWEST ANNUAL OPERATING COST	CONVENTIONAL CHILLER/BOILER CENTRAL PLANT	CONVENTIONAL CHILLER/ BOILER CENTRAL PLANT	
	CENTRAL PLANT PRIMARILY CHILLER AND PUMP MAINTENANCE	LOWEST 30 YR LIFE-CYCLE COST	LOW MAINTENANCE INDUCTION UNITS AND RADIANT FLOOR SYSTEMS	
	CENTRAL PLANT WITH NO OUTDOOR EQUIPMENT NOISE	LOW MAINTENANCE INDUCTION UNITS AND RADIANT FLOOR SYSTEMS		
	POTENTIAL FOR NO FOSSIL FUEL			
	GREATEST POTENTIAL FOR NET ZERO			
	CENTRAL PLANT WITH HIGH LIFE EXPECTANCY			
	LOW MAINTENANCE INDUCTION UNITS AND RADIANT FLOOR SYSTEMS			
CONS	HIGHEST FIRST COST w/GEO-EXCHANGE BOREHOLES & ASSOCIATED PIPING	MODERATE FIRST COST W/INDUCTION UNITS	MODERATE FIRST COST w/FAN COIL UNITS	
	HIGHEST 30 YR LIFE-CYCLE COST	HIGH LEVEL CHILLER/COOLING TOWER CENTRAL PLANT CONTROLS	HIGH LEVEL CHILLER/COOLING TOWER CENTRAL PLANT CONTROLS	
	SOPHISTICATED CHILLER-HEATER CONTROLS/ TECHNICAL EXPERTISE	HIGH LEVEL COOLING TOWER MAINTENANCE (WATER TREATMENT)	HIGH LEVEL COOLING TOWER MAINTENANCE (WATER TREATMENT)	
	MAY REQUIRE SUPPLEMENTAL HEAT REJECTION OR HEAT ADDITION INITIALLY OR IN THE FUTURE	LOWER LIFE EXPECTANCY CENTRAL PLANT COMPONENTS (COOLING TOWERS & BOILERS)	LOWER LIFE EXPECTANCY CENTRAL PLANT COMPONENTS (COOLING TOWERS & BOILERS)	
		COOLING TOWER OUTDOOR NOISE	COOLING TOWER OUTDOOR NOISE/ FAN COIL UNITS MODERATE INDOOR NOISE	
			HIGH FAN COIL UNIT MAINTENANCE (FILTERS, MOTORS, CONDENSATE)	
COMMON FEATURES				
RADIANT FLOOR COOLING & HEATING	VERY LOW MAINTENANCE/ HIGHEST COOLING & HEATING EFFICIENCY/ REDUCES DUCTWORK DISTRIBUTION FOR COOLING			
DEMAND CONTROL VENTILATION	REDUCES OUTSIDE VENTILATION AIR WHEN OCCUPANCY IS LOW OR SPACE IS UNOCCUPIED/ REDUCES ENERGY CONSUMPTION			
HEAT RECOVERY VENTILATION UNITS	PRE-CONDITIONING OF OUTSIDE VENTILATION AIR USING EXHAUST AIR/ SIZED FOR VENTILATION/ REDUCES DUCT SIZES AND FAN ENERGY			
VAV AIR HANDLING UNITS	REDUCES FAN ENERGY DURING PERIODS OF LOW DEMAND			

PERKINS+WILL AKE ip

