Subdivision Engineering Drainage Calculations For Sleepy Hollow Road at 178 Marsh Street Belmont, Massachusetts

Prepared by

Gala Simon Associates, Inc. 394 Lowell Street, Suite 18 Lexington, MA 02420 781-676-2962

April 15, 2016 Revised October 19, 2016 Revised February 24, 2017 Revised March 1, 2017

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Management and Erosion Control Report must be submitted with the building permit application for a project that is covered by the Town of Belmont Stormwater Management and Erosion Control Bylaw. The following checklist is NOT a substitute for the Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management and Erosion Control documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Report must include:

- The Checklist completed and stamped by a Registered Professional Engineer (see page 2) that
 certifies that the Report contains all required submittals.¹ This Checklist is to be used as the cover
 for the completed Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Report shall also document compliance with the Stormwater Management and Erosion Control Bylaw recognizing the bylaw contains provisions that could be more strict or broader in scope than the Stormwater Management Standards.

To ensure that the Report is complete, applicants are required to fill in the Report Checklist by checking the box to indicate that the specified information has been included in the Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Management and Erosion Control Checklist and Certification must be

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue a permit that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Report Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Report. The checklist is also intended to provide the reviewing authority with a summary of the components necessary for a comprehensive Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Management and Erosion Control Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan, the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

ALBERTO III

OF MA

CLE

Ro. Solo III

STOTAL

Signature and Date

10/19/2016

60-325 - Stormwater Management and Erosion Control Bylaw (excerpt)

F Stormwater Management and Erosion Control

F (1) Regulated Activities

A Stormwater Management and Erosion Control Permit shall be required prior to undertaking any land disturbance that involves:

- (a) An alteration that will result in land disturbances of 2,500 square feet of total area or more, or that
 is part of a common plan for development that will disturb 2,500 square feet or more;
- (b) An alteration that will increase the amount of a lot's impervious surface area to more than 25% of the lot's total area; or
- (c) Storage or permanent placement of more than 100 cubic yards of excavated material, fill, snow or ice.

F (3) General Requirements

- (a) An Operation and Maintenance Plan shall be submitted to the OCD for approval prior to the issuance of a Stormwater Management and Erosion Control Permit. The Operation and Maintenance Plan shall be designed to ensure compliance with the Stormwater Management and Erosion Control Permit, this Bylaw, and the Massachusetts Surface Water Quality Standards, 314 CMR 4.00, in all seasons and throughout the life of the system.
- (b) As-built drawings showing all stormwater management systems shall be submitted to the OCD at the completion of a project.
- (c) The OCD may require the applicant to contribute to the cost of design, construction, and maintenance of a public or shared stormwater facility in lieu of an onsite stormwater facility where the OCD determines that there are not sufficient site conditions for onsite Best Management Practices that will satisfy the design criteria set forth in Section 34.6.4.1 of this Bylaw and the performance standards set forth in the regulations promulgated under this Bylaw. Funds so contributed may be used to design, construct, and maintain stormwater projects that will improve the quality and quantity of surface waters in Belmont by treating and recharging stormwater from existing impervious surfaces that is now discharged to said waters with inadequate treatment or recharge. The amount of any required contribution to the fund shall be determined by the OCD pursuant to standards established in the Regulations adopted pursuant to this Bylaw.

F (4) Design Criteria (The Report shall consider all of the design criteria below)

All Development shall satisfy the following design criteria:

- (a) Compliance with all applicable provisions of the Stormwater Management Standards, regardless of the proximity of the development to resource areas or their buffer zones, as defined by the Wetlands Protection Act, M.G.L. c. 131, § 40 and its implementing regulations.
- (b) Erosion and sediment controls must be implemented to prevent adverse impacts during disturbance and construction activities.
- (c) There shall be no change to the existing conditions of abutting properties from any increase in volume of stormwater runoff or from erosion, silting, flooding, sedimentation or impacts to wetlands, ground water levels or wells.
- (d) When any proposed discharge may have an impact upon streams, wetlands and/or storm sewers, the OCD may require minimization or elimination of this impact based on site conditions and existing stormwater system capacity.

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and edevelopment?								
New development								
Redevelopment								
Mix of New Development and Redevelopment								
LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design the project:								
No disturbance to any Wetland Resource Areas								
Site Design Practices								
Reduced Impervious Area (Redevelopment Only)								
Minimizing disturbance to existing trees and shrubs								
☐ LID Site Design Credit Requested:								
Credit 1								
Credit 2								
☐ Credit 3								
Use of "country drainage" versus curb and gutter conveyance and pipe								
☐ Bioretention Cells (includes Rain Gardens)								
Constructed Stormwater Wetlands (includes Gravel Wetlands designs)								
☐ Treebox Filter								
☐ Water Quality Swale								
☐ Grass Channel								
☐ Green Roof								
Other (describe): SUBSURFACE DRAINAUE								
Standard 1: No New Untreated Discharges								
No new untreated discharges								
Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth								

of

Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.
Standard 2: Peak Rate Attenuation
Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.
Calculations provided to show that post-development peak discharge rates do not exceed pre- development rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24- hour storm.
Any potential change to the existing conditions of abutting properties from any increase in volume of stormwater runoff have been identified in the Report
The Report provides calculations demonstrating that the post-development discharge volume is equal to or less than the pre-development discharge volume from the 2-year and the 10-year 24-hour storms.
The Report provides a quantitative impact of discharge volumes from the 100-year 24-hour storm. If this evaluation shows that increased off-site flooding result from the discharge volumes from the 100-year 24-hour storms, BMPs also are described in the Report that the applicant will implement and maintained to attenuate these discharges.
Any potential change to the existing conditions of abutting properties from erosion, silting, flooding, or sedimentation have been identified in the Report.
The Report describes the practices and controls that the Applicant will implement and maintain to prevent adverse impacts from erosion, silting, flooding, or sedimentation.
Any potential impacts to wetlands have been identified in the Report.
The Report describes the practices and controls that the Applicant will implement and maintain to prevent adverse impacts to wetlands.
Additional Requirements for Projects other than One and Two Family Developments:
Any potential impacts to ground water levels or wells have been identified in the Report, including quantitative projections of changes in the seasonal high water table and quantitative projections of storm-related short-term mounding calculations associated with infiltration BMPs for a 24-hour 10 year design storm.
The Report describes the practices and controls that the Applicant will implement and maintain (if required) to prevent adverse impacts to ground water levels or wells for a 24-hour 10 year design storm.
Requirements Specific to Section F (4)(d)
Is stormwater from the pre-development site discharged directly to (check all that apply):

	A surface v	vater bo	dy (specify the v	ater boo	ly)	ename ven	a Talanda (Amerika Talan a), can ing maning at Sangan (ana	Contract district Contract in contract in the		
	The Belmont MS4 (storm sewers)									
	Another MS	64 (spec	cify the MS4)							
12	Other (spec	cify)	LEACHIN	6 Pi	T W	V	MARSH	STREFT		
Will st	ormwater fro	m the p	ost-development	site be	discharg	jes c	directly to (c	heck all that apply):		
	A surface v	vater bo	dy (specify the v	ater boo	ly)					
	The Belmo	nt MS4	(storm sewers)							
	Another MS	S4 (spec	cify the MS4)							
	Other (spec	cify)	LEACHING	Pit	- on	, 1	MARSH	STREET		
	otential impa t. (Explain in			nds and/	or storm	sev	vers have b	een identified in the		
T-			ented with mitiga n Report narrativ		sures th	nat ti	he Applican	t will implement and		
	These will I	pe preve	ented without mit	igating r	neasure	s (e	xplain in Re	port narrative)		
			oractices and cor cts to streams, w					ement and maintain to		
Additiona	l Requireme	nts for	Projects other	than On	e and T	wo l	Family Dev	elopments:		
Qualit		and any	applicable appre					achusetts Surface Water (TMDL) waste load		
Standard	3: Recharge)								
Soil A	nalysis provid	ded.								
Requi	red Recharge	e Volum	e calculation pro	vided.						
☐ Requi	red Recharge	e volum	e reduced throug	h use of	the LID	site	Design Cre	edits.		
☐ Sizing	the infiltratio	n, BMP	s is based on the	followin	g metho	od: (Check the n	nethod used.		
☐ Sta	atic	☐ Sin	nple Dynamic		☐ Dyr	nam	ic Field ¹			
Runof	f from all imp	ervious	areas at the site	dischar	jing to th	he in	filtration BN	MP.		
are pr	ovided showi	ng that						ion BMP and calculations ation BMPs is sufficient to		
Recha	arge BMPs ha	ave bee	n sized to infiltra	e the Re	quired l	Rech	narge Volun	ne.		

Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum extent practicable for the following reason:
Site is comprised solely of C and D soils and/or bedrock at the land surface
M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
Solid Waste Landfill pursuant to 310 CMR 19.000
Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.
¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.
The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland
Standard 4: Water Quality
The Long-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
is within the Zone II or Interim Wellhead Protection Area
is near or to other critical areas
is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)

	involves runoff from land uses with higher potential pollutant loads.
	The Required Water Quality Volume is reduced through use of the LID site Design Credits.
	Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided. The BMP is sized (and calculations provided) based on: The ½" or 1" Water Quality Volume or
	☐ The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	indard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prio</i> to the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	andard 6: Critical Areas
U	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
W	Critical areas and BMPs are identified in the Stormwater Report.
	ndard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum tent practicable The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
	☐ Limited Project

with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protect from exposure to rain, snow, snow melt and runoff Bike Path and/or Foot Path Redevelopment Project Redevelopment portion of mix of new and redevelopment. Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and as explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist for Notume 2 Chapter 3 of the Massachusetts Stormwater Report. The redevelopment checklist for Notume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreate and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions. Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include following information: Narrative; Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Erosion and Sedimentation Controls; Inspection Schedule; Maintenance Schedule; Maintenance Schedule; Inspection and Maintenance Log Form.		Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
Redevelopment Project Redevelopment portion of mix of new and redevelopment. Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist for in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document this the proposed stormwater management system (a) compiles with Standards 2, 3 and the pretreate and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions. Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include following information: Narralive; Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Erosion and Sedimentation Controls; Inspection and Maintenance of Erosion and Sedimentation Controls; Inspection and Maintenance Log Form.		Marina and/or boatyard provided the hull painting, service and maintenance areas are protected
Redevelopment portion of mix of new and redevelopment. Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist for in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document this the proposed stormwater management system (a) compiles with Standards 2, 3 and the pretreating and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions. Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include following information: Narrative: Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Erosion and Sedimentation Controls; Operation and Maintenance of Erosion and Sedimentation Controls; Inspection Schedule; Maintenance Schedule; Inspection and Maintenance Log Form. Adverse impacts due to erosion, sedimentation, or both during disturbance and construction activiare prevented: With erosion and sediment controls that the Applicant will implemented and maintain (explain in Report narrative)		☐ Bike Path and/or Foot Path
Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist for in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document the the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreating and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions. Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include following information: Narrative; Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Erosion and Sedimentation Controls; Operation and Maintenance of Erosion and Sedimentation Controls; Inspection Schedule; Maintenance Schedule; Inspection and Maintenance Log Form.		Redevelopment Project
explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist for in Volume 2 Chapter 3 of the Massachusetts Stormwater Report. The redevelopment checklist for in Volume 2 Chapter 3 of the Massachusetts Stormwater Report. The redevelopment checklist for in Volume 2 Chapter 3 of the Massachusetts Stormwater Report. The redevelopment checklist for in Volume 2 Chapter 3 of the Massachusetts Stormwater Report. The redevelopment checklist for in Volume 2 Chapter 3 of the Massachusetts Stormwater Report. The redevelopment checklist for in Volume 2 Chapter 3 of the Massachusetts Stormwater Report. The redevelopment Percentage and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions. Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include following information: Narrative: Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Sequencing of Erosion and Sedimentation Controls; Operation and Maintenance of Erosion and Sedimentation Controls; Inspection Schedule; Inspection Schedule; Inspection and Maintenance Log Form. Adverse impacts due to erosion, sedimentation, or both during disturbance and construction activities prevented: With erosion and sediment controls that the Applicant will implemented and maintain (explain in Report narrative)		Redevelopment portion of mix of new and redevelopment.
improve existing conditions is provided in the Stormwater Report. The redevelopment checklist for in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document the the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreating and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions. Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include following information: Narrative; Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Erosion and Sedimentation Controls; Operation and Maintenance of Erosion and Sedimentation Controls; Inspection Schedule; Inspection and Maintenance Log Form. Adverse impacts due to erosion, sedimentation, or both during disturbance and construction activities are prevented: With erosion and sediment controls that the Applicant will implemented and maintain (explain in Report narrative)		the first familiary and the first family first and all
A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include following information: Narrative; Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Erosion and Sedimentation Controls; Operation and Maintenance of Erosion and Sedimentation Controls; Inspection Schedule; Maintenance Schedule; Inspection and Maintenance Log Form. Adverse impacts due to erosion, sedimentation, or both during disturbance and construction activitive prevented: With erosion and sediment controls that the Applicant will implemented and maintain (explain in Report narrative)		improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b)
 Narrative; Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Erosion and Sedimentation Controls; Operation and Maintenance of Erosion and Sedimentation Controls; Inspection Schedule; Maintenance Schedule; Inspection and Maintenance Log Form. Adverse impacts due to erosion, sedimentation, or both during disturbance and construction activitare prevented: With erosion and sediment controls that the Applicant will implemented and maintain (explain in Report narrative)	Sta	andard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control
 Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Erosion and Sedimentation Controls; Operation and Maintenance of Erosion and Sedimentation Controls; Inspection Schedule; Maintenance Schedule; Inspection and Maintenance Log Form. Adverse impacts due to erosion, sedimentation, or both during disturbance and construction activitare prevented: With erosion and sediment controls that the Applicant will implemented and maintain (explain in Report narrative)		Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the owing information:
With erosion and sediment controls that the Applicant will implemented and maintain (explain in Report narrative)		 Construction Period Operation and Maintenance Plan; Names of Persons or Entity Responsible for Plan Compliance; Construction Period Pollution Prevention Measures; Erosion and Sedimentation Control Plan Drawings; Detail drawings and specifications for erosion control BMPs, including sizing calculations; Vegetation Planning; Site Development Plan; Construction Sequencing Plan; Sequencing of Erosion and Sedimentation Controls; Operation and Maintenance of Erosion and Sedimentation Controls; Inspection Schedule; Maintenance Schedule;
(explain in Report narrative)	마 are	Adverse impacts due to erosion, sedimentation, or both during disturbance and construction activities prevented:
☐ Without erosion and sediment controls (explain in Report narrative)		
		Without erosion and sediment controls (explain in Report narrative)

V	A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.
	The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be submitted <i>before</i> land disturbance begins.
	The project is not covered by a NPDES Construction General Permit.
	The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report. The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.
Sta	indard 9: Operation and Maintenance Plan
4	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
	Name of the stormwater management system owners;
	Party responsible for operation and maintenance;
	Schedule for implementation of routine and non-routine maintenance tasks;
	Plan showing the location of all stormwater BMPs maintenance access areas;
	Description and delineation of public safety features;
	Estimated operation and maintenance budget; and
	Operation and Maintenance Log Form.
	The responsible party is <i>not</i> the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
	A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
	A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.
Sta	andard 10: Prohibition of Illicit Discharges
V	The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
D	An Illicit Discharge Compliance Statement is attached;
	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the discharge of any stormwater to post-construction BMPs.

Table of Contents

Project Narrative	2
Summary of Results:	3
Table 1: Summary of Stormwater Runoff and Volume to Wetlands (1R)	3
Table 2: Summary of Stormwater Runoff and Volume to Marsh Street (1S)	3
Table 3: Summary of Stormwater Runoff and Volume to Site Depression (3S+4S+5S)	
Table 4: Summary of Stormwater Runoff and Volume to Woodbine Depression (6S +7S)	3
Required Recharge Volume Calculation:	4
Required Water Quality Volume Calculation:	4
Table 5: Infiltration System Volumes for the 100-Year Storm Event	4
TSS Removal Estimate:	
Table 6: TSS Removal Calculation	5
72-Hour draw down of BMPs	
Table 7: Summary of Draw Down for Infiltration Systems from HydroCAD	5
Table 8: Summary of Draw Down for Infiltration Systems using Formula from Massachusetts	
Stormwater Handbook (Vol. 3, Ch. 1, pg. 25)	
Calculation of Exfiltration Rates for Infiltration Systems.	11
Table 9: Summary of Infiltration System Exfiltration Rates.	11
USDA Soils	
NRCC Precipitation Estimates.	
Construction Period Pollution Preventions and Erosion and Sedimentation Control	
Operation and Maintenance Plan for Drainage Systems	21
Long-Term Pollution Prevention Plan.	
Illicit Discharge Compliance Statement	
Appendix A – Existing Conditions	
Appendix B – Proposed Conditions.	
Appendix C –Infiltration Systems	
Appendix D – Groundwater Mounding Analysis.	
Appendix E –Rip-Rap Sizing Calculations.	
Appendix F – Stormwater Pipe Sizing Calculations	

Project Narrative

The project consists of the redevelopment of a 6.864 +/- acre lot at 178 Marsh Street, Belmont. Under existing conditions, the site contains a 2.5 story single family home with a driveway and garage, two Isolated Lands Subject to Flooding (I.L.S.F), and a Bordering Vegetated Wetland (BVW). Woodbine Road meets the lot at its rear, northwesterly side.

The proposed development layout consists of a 751.5 foot road to be located on the westerly side of the property, named Sleepy Hollow Road, ending in a cul-de-sac. New utility services would include, an 8" water line, 2 fire hydrants, 8" sanitary sewer, and 12" stormwater sewer. The 8" water line would connect the existing services on Marsh Street (8") and Woodbine Road (10"), running cross country from the end of the proposed cul-de-sac to Woodbine Road via a utility easement.

Two walls totaling approximately 600 linear feet would need to be constructed in order to raise the existing grade for the road. A culvert system would then need to be installed under the road to allow for stormwater runoff from off-site properties to flow into the I.L.S.F. All of the roadway drainage, with the exception of the entrance area, is routed via catch basins, drain manholes, a sediment and oil separator, and leaching pit into a detention/infiltration basin, with an overflow to the I.L.S.F. On-site infiltration is proposed at each lot.

All work required for the construction of the roadway, is proposed outside of the 100' Buffer Zone of the BVW. Development of lots 4 and 5 would fall within the BVW buffer zone.

Summary of Results:

The following table summarizes the peak flows and volumes from the property under Existing and Proposed Conditions.

<u>Table 1:</u> Summary of Stormwater Runoff and Volume to Wetlands (1R)

Storm Event	Existing Conditions Peak		Proposed Co	nditions Peak	Δ	
	Runoff (cfs)	Volume (af)	Runoff (cfs)	Volume (af)	Runoff	Volume
					(cfs)	(af)
2-Year (3.21 in)	14.99	1.805	14.90	1.693	-0.09	-0.112
10-Year (4.86 in)	39.92	4.319	35.76	4.164	-4.16	-0.155
100-Year (8.84 in)	113.10	11.454	111.04	11.209	-2.06	-0.245

<u>Table 2:</u> Summary of Stormwater Runoff and Volume to Marsh Street (1S)

Storm Event	Existing Conditions Peak		Proposed Co.	nditions Peak	Δ	
	Runoff (cfs)	Volume (af)	Runoff (cfs)	Volume (af)	Runoff	Volume
					(cfs)	(af)
2-Year (3.21 in)	0.41	0.033	0.32	0.026	-0.09	-0.007
10-Year (4.86 in)	1.04	0.077	0.83	0.061	-0.21	-0.016
100-Year (8.84 in)	2.84	0.206	2.31	0.168	-0.53	-0.038

<u>Table 3:</u> Summary of Stormwater Runoff and Volume to Site Depression (3S+4S+5S)

Storm Event	Existing Conditions Peak		Proposed Co	nditions Peak	Δ	
	Runoff (cfs)	Volume (af)	Runoff (cfs)	Volume (af)	Runoff	Volume
					(cfs)	(af)
2-Year (3.21 in)	6.90	0.605	5.25	0.502	-1.65	-0.103
10-Year (4.86 in)	17.11	1.396	13.15	1.151	-3.96	-0.245
100-Year (8.84 in)	46.45	3.757	35.91	3.088	-10.54	-0.669

<u>Table 4:</u> Summary of Stormwater Runoff and Volume to Woodbine Depression (6S +7S)

Storm Event	Existing Co	nditions Peak	Proposed Co.	nditions Peak	Δ	
	Runoff (cfs)	Volume (af)	Runoff (cfs)	Volume (af)	Runoff	Volume
					(cfs)	(af)
2-Year (3.21 in)	14.77	1.463	14.74	1.459	-0.03	-0.004
10-Year (4.86 in)	31.77	3.047	31.74	3.043	-0.03	-0.004
100-Year (8.84 in)	77.49	7.443	77.48	7.438	-0.01	-0.005

Conclusions:

1. As analyzed, the peak rates of runoff and volumes will be maintained for the 2, 10, and 100 year storm events.

Required Recharge Volume Calculation:

R_v= Required Recharge Volume

F = Target Depth Factor

 A_{imp} = Impervious Area

$$R_v = F * A_{imp}$$

$$F_A = 0.60$$
" = 0.05' $A_A = 15,757 \text{ ft}^2$
 $F_D = 0.10$ " = 0.01' $A_D = 42,027 \text{ ft}^2$

$$R_v = (F_B * A_B) + (F_D * A_D)$$

 $R_v = (0.05 * 15,757) + (0.01 * 42,027)$

$$R_v = 1208.1 \text{ ft}^3$$

This value is met, as seen in Table 5.

Required Water Quality Volume Calculation:

V_{WO}= Required Water Quality Volume

D_{WO} = Water Quality Depth

 A_{imp} = Impervious area

$$V_{WQ} = D_{WQ} * A_{imp}$$

$$D_{WO} = 1" = 0.083'$$

$$A_{imp} = 55,174 \text{ ft}^2$$

$$V_{WQ} = 0.083 * 55,174$$

$$V_{WO} = 4579.4 \text{ ft}^3$$

This value is met as seen in Table 5.

Table 5: Infiltration System Volumes for the 100-Year Storm Event

Infiltration System	Total Storage Volume	Total Volumetric	Total Water Quality Volume @
	(cf)	Capacity (cf)	El. 89.80 (cf)
Detention/Infiltration Pond	11,905	14,998	4702

TSS Removal Estimate:

<u>Table 6:</u> TSS Removal Calculation

	BMP	TSS Removal Rate	Starting TSS Load	Amount Removed	Remaining Load
in .	Street Sweeping	0.100	1.000	0.100	0.900
Pretreatment BMPs	Deep Sump Catch Basin	0.250	0.900	0.225	0.675
	Oil Grit Separator	0.250	0.675	0.169	0.506
Infiltration BMPs	Subsurface Structure	0.800	0.506	0.405	0.101
Other BMPs	Dry Detention Basin	0.000	0.101	0.000	0.101

Pretreatment TSS Removal (%)= 49.4 Total TSS Removal (%)= 89.9

72-Hour draw down of BMPs

Table 7: Summary of Draw Down for Infiltration Systems from HydroCAD

System	Time (hrs)
1	71.5
2	64.3
3	58.8
4	63.0
5	64.3
6	56.2
7	24.5
Detention/Infiltration Pond	33.0

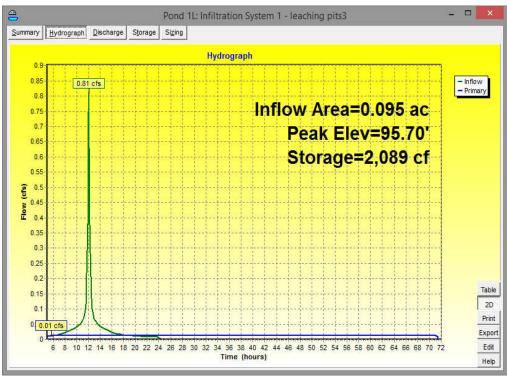


Figure 1: Infiltration System 1 Draw-Down

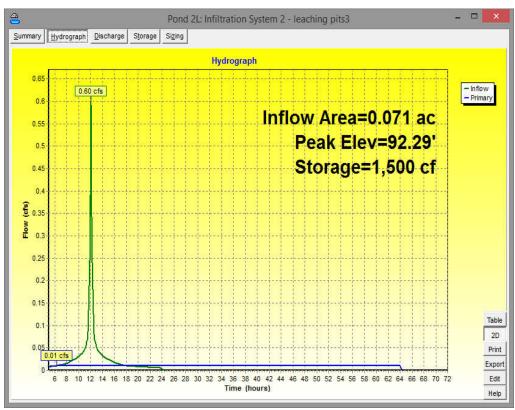


Figure 2: Infiltration System 2 Draw-Down

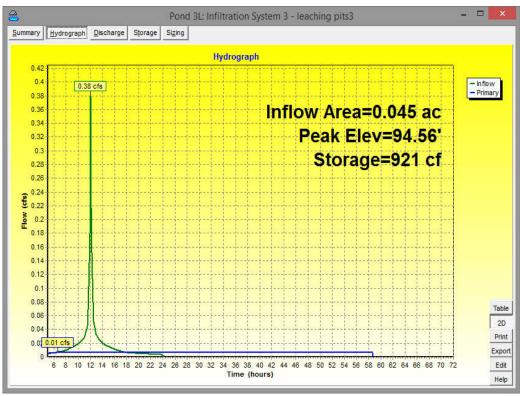


Figure 3: Infiltration System 3 Draw-Down

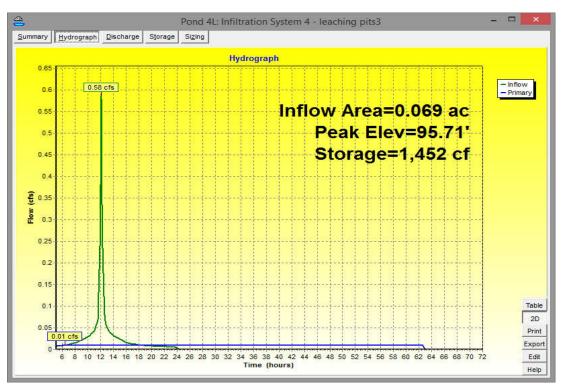


Figure 4: Infiltration System 4 Draw-Down

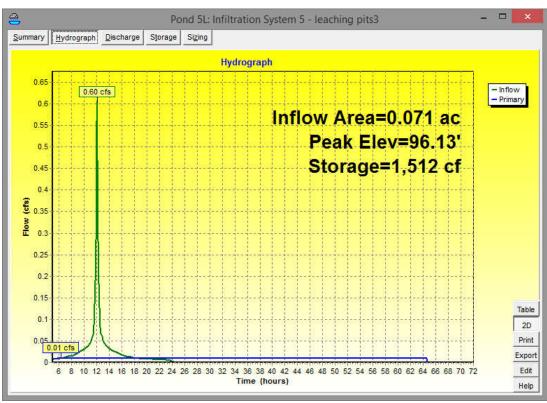


Figure 5: Infiltration System 5 Draw-Down

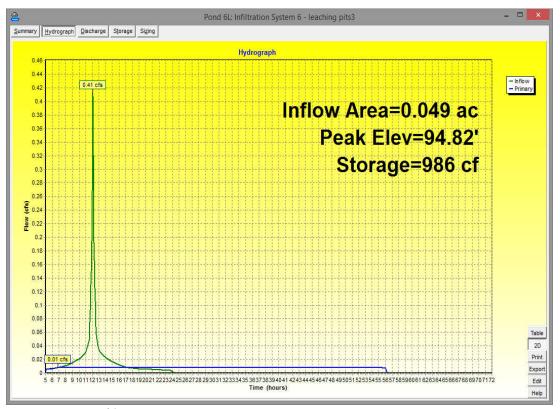


Figure 6: Infiltration System 6 Draw-Down

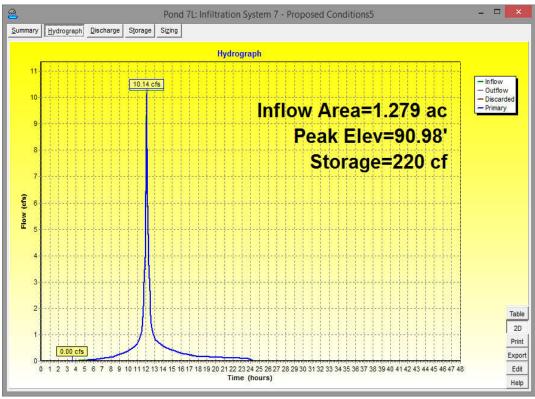


Figure 7: Infiltration System 7 Draw-Down

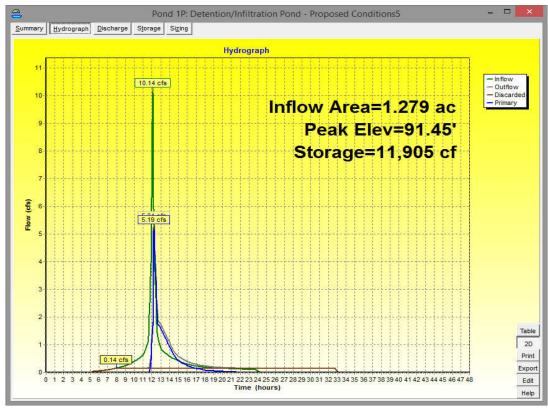


Figure 8: Detention/Infiltration Pond Draw-Down

<u>Table 8:</u> Summary of Draw Down for Infiltration Systems using Formula from Massachusetts Stormwater Handbook (Vol. 3, Ch. 1, pg. 25)

System	Base Area (sf)	R _v (cf)	Time _{drawdown} * (hr)
1	512	2089	48.0
2	412	1500	42.8
3	281	921	38.6
4	412	1452	41.5
5	412	1512	43.2
6	346	986	33.5
7	79	220	32.8
Detention/Infiltration Pond	6049	11,905	23.2

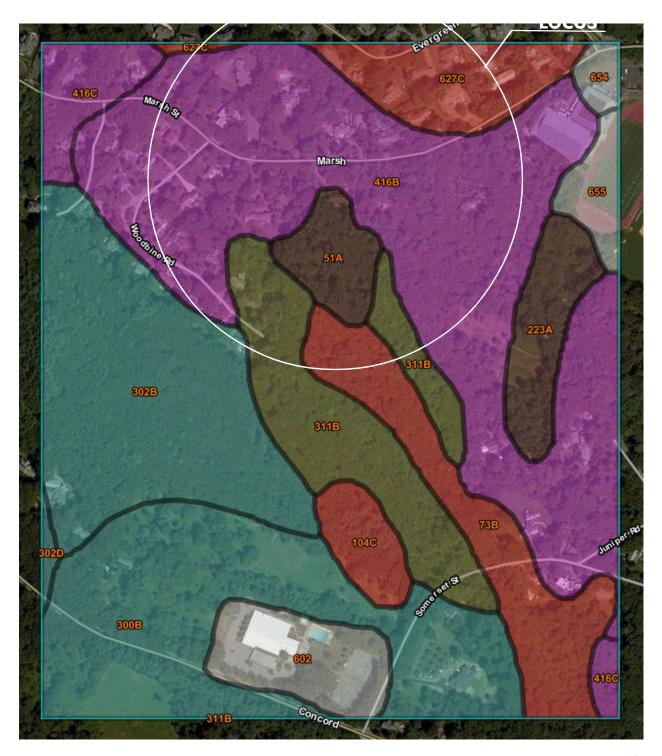
^{*}Rawls Rate (HSG B) = 1.02 in/hr = 0.085 ft/hr

 $Time_{drawdown} = R_v / (Rawls * Base Area)$

Where R_v = Storage Volume for 100-Year Storm Event

Calculation of Exfiltration Rates for Infiltration Systems

Exfiltration Rate = Rawls Rate * Base Area of System


Rawls Rate (HSG B) = $1.02 \text{ in/hr} = 2.36*10^{-5} \text{ ft/s}$

<u>Table 9:</u> Summary of Infiltration System Exfiltration Rates

System	Base Area (sf)	Exfiltration Rate (cfs)
1	512	0.012
2	412	0.010
3	281	0.007
4	412	0.010
5	412	0.010
6	346	0.008
7	79	0.002
Detention/Infiltration Pond	6049	0.143

USDA Soils

Please refer to plan C-3 for site specific soil data, obtained via soil testing by Gala Simon Associates on February 4, 2014.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
51A	Swansea muck, 0 to 1 percent slopes	B/D	3.4	2.3%
73B	Whitman fine sandy loam, 0 to 3 percent slopes, extremely stony	D	10.5	7.1%
104C	Hollis-Rock outcrop- Charlton complex, 0 to 15 percent slopes	D	2.9	2.0%
223A	Scio very fine sandy loam, 0 to 3 percent slopes	B/D	4.9	3.3%
300B	Montauk fine sandy loam, 3 to 8 percent slopes	С	24.0	16.2%
302B	Montauk fine sandy loam, 0 to 8 percent slopes, extremely stony	С	22.2	15.0%
302D	Montauk fine sandy loam, 15 to 35 percent slopes, extremely stony	С	0.5	0.3%
311B	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	C/D	13.3	9.0%
416B	Narragansett silt loam, 3 to 8 percent slopes, very stony	A	46.3	31.2%
416C	Narragansett silt loam, 8 to 15 percent slopes, very stony	A	4.4	3.0%
602	Urban land		5.7	3.9%
627C	Newport-Urban land complex, 3 to 15 percent slopes	D	6.7	4.5%
654	Udorthents, loamy		1.0	0.7%
655	Udorthents, wet substratum		2.3	1.6%
Totals for Area of Inter	rest		148.2	100.0%

NRCC Precipitation Estimates

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing Yes State Massachusetts

Location

Longitude 71.191 degrees West Latitude 42.406 degrees North

Elevation 0 feet

Date/Time Fri, 24 Feb 2017 13:24:36 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
lyr	0.28	0.43	0.53	0.70	0.87	1.10	lyr	0.75	1.04	1.28	1.63	2.08	2.67	2.91	1yr	2.36	2.80	3.27	3.95	4.63	1yr
2yr	0.35	0.54	0.67	0.88	1.11	1.40	2yr	0.96	1.28	1.62	2.03	2.55	3.21	3,56	2yr	2.84	3.42	3.92	4.67	5.32	2yr
5yr	0.42	0.65	0.81	1.09	1.39	1.77	5yr	1.20	1.61	2.06	2.59	3.24	4.07	4.53	5yr	3.60	4.35	4.98	5.93	6.65	5yr
10yr	0.47	0.74	0.93	1.27	1.65	2.12	10yr	1.42	1.91	2.47	3.11	3.90	4.86	5.44	10yr	4.30	5.23	5.96	7.12	7.88	10yr
25yr	0.56	0.89	1.13	1.56	2.07	2.67	25yr	1.78	2.40	3.13	3.96	4.96	6.16	6.92	25yr	5.46	6.66	7.57	9.06	9.86	25yr
50yr	0.63	1.01	1.30	1.82	2.46	3.22	50yr	2.12	2.85	3.77	4.77	5.96	7.38	8.32	50yr	6.53	8.00	9.07	10.87	11.69	50yr
100yr	0.72	1.17	1.51	2.14	2.92	3.85	100yr	2.52	3.39	4.53	5.74	7.16	8.84	10.00	100yr	7.82	9.62	10.87	13.06	13.87	100y
200yr	0.83	1.36	1.76	2.52	3.48	4.61	200yr	3.00	4.03	5.43	6.88	8.59	10.59	12.03	200yr	9.37	11.57	13.04	15,69	16.45	200y
500yr	1.01	1.66	2.16	3.14	4.39	5.85	500yr	3.79	5.07	6.92	8.77	10.94	13.46	15.36	500yr	11.92	14.77	16.59	20.01	20.64	500y

Construction Period Pollution Preventions and Erosion and Sedimentation Control

Narrative

Erosion control measures will be installed before construction begins, and maintained throughout the course of the project. Silt fencing will be installed at the boundary of the proposed work and maintained based on the requirements set forth in this plan. A stabilized construction entrance will be installed at the entrance to 178 Marsh street to mitigate construction vehicle track out. A silt sack will be installed at the street catch basin in front of 178 Marsh Street to prevent sediment from entering. All pollution prevention measures set forth in this plan must be carried out during construction, with regular inspection and maintenance.

Responsible Entity for Plan Compliance

Donald Chiofaro 178 Marsh Street Belmont, MA 02478

Erosion and Sedimentation Control

Erosion Control

Erosion controls such as silt fencing and fiber rolls will be installed below upland disturbing activities. See sheet C-1 of plans for layout and C-2 for detail.

Maintenance Requirements

• Remove sediment when it reaches ½ the height of the above ground height of the fence/roll.

Stabilized Construction Entrance

Stabilized construction entrances will be installed where trucks enter and exit the project in order to reduce sediment from being tracked out. See sheet C-1 of plans for layout and C-2 for detail.

Maintenance Requirements

- Add and/or reshape crushed stone as needed
- If any sediment is tracked onto the existing road, it is to be removed immediately.

Soil Compaction Control

Areas for subsurface infiltration will be protected with snow fencing upon completion.

- Heavy equipment will be excluded from subsurface infiltration areas by surrounding them with snow fencing
- Equipment will only be allowed over subsurface roadway system upon installation of roadway binder.

Construction Period Pollution Prevention Measures

Construction Site Pollutants:

- Oils used during paving
- Washout from pouring concrete
- Paints and Solvents

Spill Prevention and Response

Where a leak, spill, or other release containing a hazardous substance or oil occurs, owner/contractor is to notify MADEP at 617-654-6500 and the NRC (National Response Center) at (800)424-8802. Notify local authorities also

Fueling and Maintenance of Equipment or Vehicles

- Dispose of recycled oil and oily wastes in accordance with local, State and Federal requirements.
- Use drip pans and absorbents under and around leaky vehicles
- Do not clean surfaces by hosing them down
- Clean up spills or contaminated surfaces immediately.
- Adequate supplies to be available at all times to handle spills, leaks and disposal of used liquids

Washing of Equipment and Vehicles

- Wash vehicles away from stormwater inlets
- All washing products are to be protected from rainfall by covering them with plastic sheeting or kept in a storage shed.

Maintenance Requirements

• Verify that products are dry. Check for leaks in sheeting or holes in shed roofs.

Storage, Handling, and Disposal of Construction Products, Materials, and Wastes

- Store/cover building products that could create releases onto the site.
- Separate hazardous or toxic waste from construction and domestic waste
- Provide cover to construction products by maintaining them under roof cover of plastic sheeting cover.
- A covered dumpster is to be provided at the site for any construction wastes.

Maintenance Requirements

Dumpster is to be emptied on an "as need" basis without any overflow of debris. Hazardous
waste is to be stored in sealed containers and removed by following local, State and Federal
requirements.

Pesticides, Herbicides, Insecticides, Fertilizers, and Landscape Materials

- Discharges from herbicides, insecticides and fertilizers shall be at a minimum.
- Apply these products only at a rate and amount that is consistent with manufacturer recommendations
- Avoid application of products prior to rainfall or frozen ground

Maintenance Requirements

• Follow local, State and Federal requirements regarding these products

Hazardous or Toxic Waste

(Note: Examples include paints, solvents, petroleum-based products, wood preservatives, additives, curing compounds, acids.)

- If stored on site, all of these products are to be kept in sealed containers and protected from the weather.
- Provide a spill kit to be available to all site workers.

Maintenance Requirements

• Verify location of kit at all times and provide training to workers on its use.

Construction and Domestic Waste

- Construction wastes and domestic wastes are to be stored in a closed dumpster.
- Operator is to contract with a waste hauler to remove debris off site.
- A dumpster is to be located on site.

Maintenance Requirements

• Verify amount of debris in dumpster on a daily basis. Contact hauler for removal on an "as need basis'.

Sanitary Waste

- Install portable toilet facilities in accessible locations and sufficient number for the project
- A septic hauler shall remove the waste on a weekly basis or on an 'as need" basis

Washing of Applicators and Containers used for Paint, Concrete or Other Materials

- When washing tools containing paint, concrete or other potentially deleterious materials, an effective means of eliminating these discharges must be in place.
- Do not dump liquid wastes in storm sewers
- Remove and dispose of hardened concrete waste in a manner that is consistent with construction wastes
- Locate any washing activities as far as possible from any stormwater inlets on conveyances
- Designate a specific area on site for this activity.

Maintenance Requirements

• Clean and dispose of wastes on same work day.

Fertilizers

- Fertilizers containing nitrogen and phosphorous shall be minimal
- Apply fertilizers at the appropriate time of the year.
- Do not apply these products before heavy rainfall events and never on frozen ground
- Follow all federal, state and local regulations with the use of these products

Vegetation Planning

- All new plantings are to be non-invasive, and approved local species.
- Street trees are to be planted as indicated on site plan, sheet C-1.
- Specified replanting areas and wetland restoration areas are to be detailed by environmental consultant.

Sequencing of Erosion and Sedimentation Controls

Prior to any earth-disturbing activities, the following erosion and sedimentation controls should be installed.

- 1. Installation of silt fencing along the limit of work.
- 2. Installation of silk sack in catch basin at the front of 178 Marsh Street.
- 3. Installation of stabilized construction entrance at the entrance of 178 Marsh Street.
- 4. Routine maintenance of all installed controls, as specified in this plan.

Construction Sequencing Plan

- 1. Installation of erosion control measures.
- 2. Site clearing.
- 3. Installation of roadway utilities and stormwater BMPs within drainage easement on Lot 2.
- 4. Removal of existing sewer line from dwelling at 178 Marsh Street, and installation of new lateral connection to newly constructed sewer line on Sleepy Hollow Road.
- 5. Construction of proposed walls, and culvert. Concurrent installation of infiltration system on Lot 1.
- 6. Construction of roadway and sidewalks.
- 7. Development of residential lots, including installation of infiltration systems.
- 8. Landscaping, replanting, and wetland restoration.

Inspection and Maintenance Schedule

A weekly patrol of the project's boundaries will be conducted to check for signs of erosion or discharges. This includes inspection of sediment build up at silt fencing/hay bale barriers and the status of stabilized construction entrances. All inspection and maintenance operations conducted are to be logged in the Inspection and Maintenance Log Form of this plan.

Inspection and Maintenance Log Form

Description	Name	Date

Description	Name	Date

Operation and Maintenance Plan for Drainage Systems

Project Name: Sleepy Hollow Road, Belmont, MA

Date: April 15, 2016

Revised October 19, 2016 Revised February 24, 2017 Revised March 1, 2017

Site Location: 178 Marsh Street

Belmont Massachusetts

Site Operator:

Current Owner: Donald Chiofaro
Address: 178 Marsh Street
Belmont, MA 02478

The following Operation and Maintenance Plan (O & M Plan) has been developed to comply with DEP's Stormwater Management Policy. The responsibilities outlined in the O&M Plan run with ownership of the property.

Catch basins

Maintenance:

- Catch basins are to be cleaned at least twice a year or when the depth of sediment in the sump is within 12" of the invert of the outlet pipe.
- Cleaning of catch basins should be performed at the end of the winter and fall seasons.

Leaching Pits

Maintenance:

- Drainage leaching pits are to be cleaned at least twice a year or when the depth of sediment in the bottom is 24".
- Cleaning of drainage leaching pits should be performed at the end of the winter and fall seasons.

Detention Area

Maintenance:

• Cleaning of sediment from the detention area should occur every 2 years.

Sediment & Oil Separator

Maintenance:

- The unit is to be cleaned of sediment and debris once a year.
- Cleaning procedures are to follow manufacturer recommendations
- Oils and sediments shall only be removed and disposed of in accordance with Local, State and Federal regulations.

Roadway and Walks

Maintenance:

• The roadway is to be swept at least once per year by mechanical means.

Culvert

- Inspect after heavy storms and high flows for soil erosion scouring and dislodged stones under the inlet and outlet. Repair damage promptly.
- Inspect the culvert inlet, outlet, and pipes, if possible, for tree or other vegetation roots, signs of vegetation growth, mineral deposits, trash or silt accumulations and other foreign objects obstructing flow paths. Promptly remove if found.
- Inspect the culvert pipes for signs of visible wear or breakage. Check for change of shape, abrasion, and deterioration of lining.

Riprap Basin

- Inspect after heavy storms and high flows for soil erosion, scouring, and dislodged stones, under the outlet. Repair damage promptly.
- Regularly inspect for trash and debris, removing material if found.

Long-Term Pollution Prevention Plan

Spill Prevention and Response

Where a leak, spill, or other release containing a hazardous substance or oil occurs, owner/contractor is to notify MADEP at 617-654-6500 and the NRC (National Response Center) at (800)424-8802. Notify local authorities also

Vehicle Washing Controls

- Wash vehicles away from stormwater inlets
- All washing products are to be protected from rainfall by covering them with plastic sheeting or kept in a storage shed.

Maintenance Requirements

• Verify that products are dry. Check for leaks in sheeting or holes in shed roofs.

Requirements for Routine Inspection and Maintenance of Stormwater BMPs

• Refer to Operation and Management section of Stormwater Report

Storage and use of Pesticides, Herbicides, Insecticides, Fertilizers, and Landscape Materials

- Apply these products only at a rate and amount that is consistent with manufacturer recommendations
- Avoid application of products prior to rainfall or frozen ground
- Fertilizers containing nitrogen and phosphorous shall be minimal
- Apply fertilizers at the appropriate time of the year.

Maintenance Requirements

• Follow local, State and Federal requirements regarding these products

Snow Disposal and Plowing

- Snow is to be stored only in the designated areas on site and indicated by signage. (Refer to the Layout Plan for location of said signs and dumping areas).
- Usage of snow salt and sand is to be kept to a minimum.

Maintenance of Lawns, Gardens, and Landscaped Areas

- Pesticides, herbicides, insecticides, and fertilizers shall be used at a minimum and applied only at a rate as specified by the manufacturer.
- Avoid application of products prior to rainfall or on frozen ground.
- Fertilizers containing nitrogen and phosphorous shall be minimal
- Landscaping irrigation is under no circumstances to be directed towards the stormwater sewer system.

Pet Waste Management Provisions

• Pet waste is to be collected and removed from the site by the responsible owner of the pet, so that waste does not enter the stormwater sewer system.

Snow Disposal and Plowing in Relation to Wetland Resource Areas

• Snow is not to be stored near or moved toward wetland resource areas.

Winter Road Salt and/or Sand Use and Storage Restrictions

- Use of road salt/sand is to be kept to a minimum, dependent on the severity of the snowfall.
- Anti-icing/pre-wetting measures, such as use of brines, should be considered if combined with accurate weather forecasts.

Street Sweeping Schedules

• Street sweeping schedule is to be determined by Town of Belmont.

Prevention of Illicit Discharges to Stormwater Management System

- Dumping into the stormwater sewer service is strictly prohibited.
- Discharge from car washing or driveway cleaning should not be directed towards the stormwater sewer service.
- Landscaping irrigation is under no circumstances to be directed towards the stormwater sewer system.
- Swimming pool discharges shall not be directed towards the stormwater sewer system.
- Power washing activities should not be allowed to discharge directly into the stormwater sewer system.

Stormwater BMP Containment Plan in the Event of a Spill or Discharge

In the event of a spill or discharge into the stormwater system, the stormwater shutoff valve (located on the sidewalk, within the drainage easement on Lot 2) is to be activated. The MADEP, NRC, and Town of Belmont should be contacted immediately, and the point source of the spill or discharge should be deactivated as quickly as possible.

Emergency Contacts

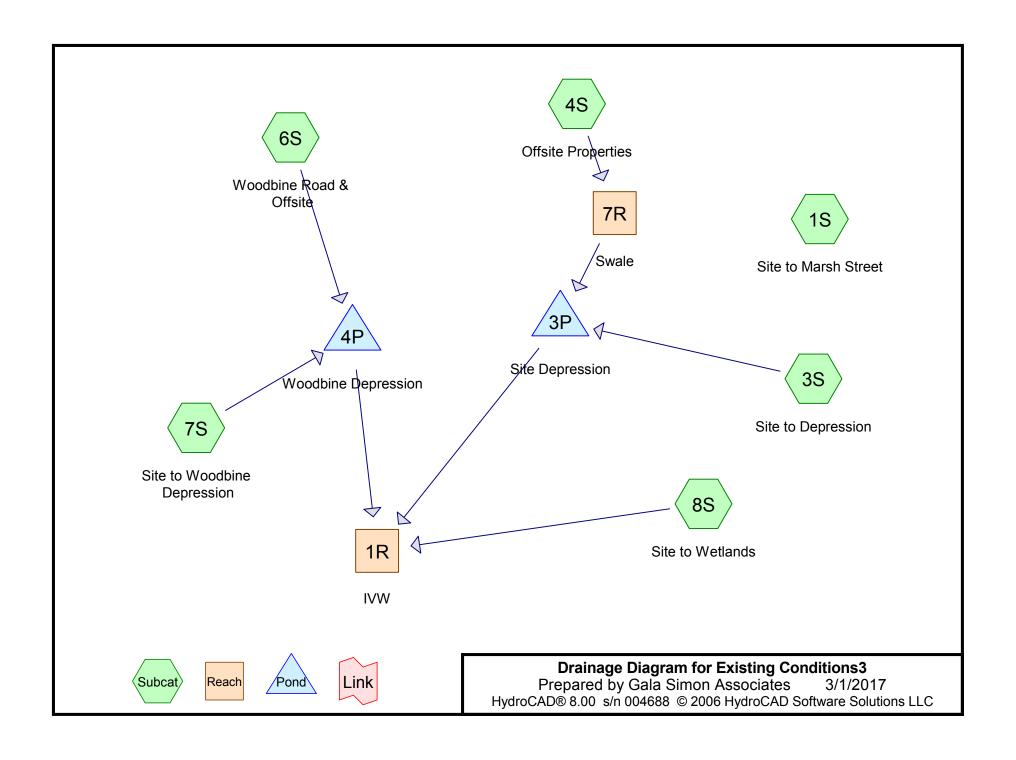
EPA	888-372-7341
MADEP	617-654-6500
NRC	800-424-8802
Town of Belmont DPW	617-993-2680 617-993-2698 (severe weather hotline)
Town of Belmont Conservation Department	617-993-2667
Town of Belmont Fire Department	911 (emergency) 617-993-2200 (non-emergency)
Gala Simon Associates	781-676-2962

Illicit Discharge Compliance Statement

An illicit discharge is considered to be any discharge to a municipal separate storm sewer that is not entirely comprised of stormwater, or discharges from fire protection services.

The Owner is responsible for full compliance with the Massachusetts Stormwater Managements Policy, EPA NPDES Construction General Permit, and takes responsibility for identification and elimination of illicit discharges, as defined by the EPA.

Owner's Name: Donald Chiofaro


Address: 178 Marsh Street, Belmont, MA

To the best of my knowledge, no detectable illicit discharges exist on the site, nor are any proposed. The included plans, calculations, specifications and documentation detail the methods of stormwater management designed to the standards of the Massachusetts Stormwater Handbook. The site plans identify the locations of all stormwater systems and show that entry is not allowed for any illicit discharges. A Long Term Pollution Prevention Plan is included, detailing prevention measures for illicit discharges. As the Site Owner, I will be responsible for implementing the Long Term Pollution Prevention Plan.

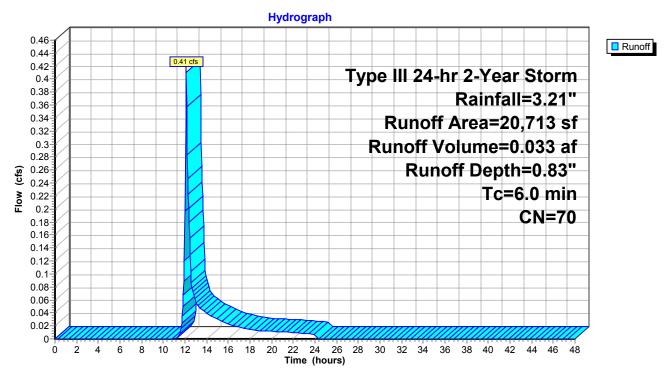
Signature:			
L'ionotura:			
ภายและแก			

Appendix A Existing Conditions

Existing Conditions 2 Year Storm Event

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 1S: Site to Marsh Street

Runoff = 0.41 cfs @ 12.10 hrs, Volume= 0.033 af, Depth= 0.83"

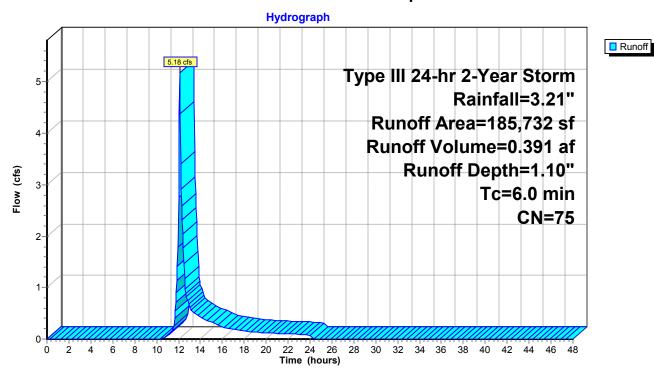
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

A	rea (sf)	CN	Description					
	5,036	98	Paved park	ing & roofs	S			
	15,677	61	>75% Gras	s cover, Go	Good, HSG B			
	20,713	70	Weighted A	verage				
	15,677		Pervious Ar	rea				
	5,036		Impervious	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	·			
6.0					Direct Entry,			

Subcatchment 1S: Site to Marsh Street

Page 2 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 3S: Site to Depression

Runoff = 5.18 cfs @ 12.10 hrs, Volume= 0.391 af, Depth= 1.10"

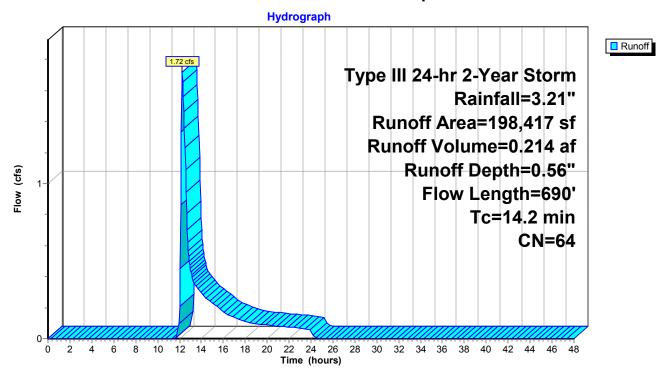
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

Area (s	sf) CN	Description	Description						
1,49	95 98	Paved road	s w/curbs 8	& sewers					
13,42	25 39	>75% Gras	s cover, Go	Good, HSG A					
6,62	25 80	>75% Gras	s cover, Go	Good, HSG D					
4,53	30 36	Woods, Fai	r, HSG A						
159,65	57 79	Woods, Fai	r, HSG D						
185,73	32 75	Weighted A	verage						
184,23	37	Pervious Ar	ea						
1,49	95	Impervious	Area						
Tc Len	_		Capacity	· · · · · · · · · · · · · · · · · · ·					
(min) (fe	eet) (ft/	/ft) (ft/sec)	(cfs)						
6.0				Direct Entry,					

Subcatchment 3S: Site to Depression

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 4S: Offsite Properties

Runoff = 1.72 cfs @ 12.25 hrs, Volume= 0.214 af, Depth= 0.56"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

	A	rea (sf)	CN D	escription						
	1	32,278	54 1	54 1/2 acre lots, 25% imp, HSG A						
		41,772		1/2 acre lots, 25% imp, HSG D						
_		24,367	85 1	/2 acre lots	s, 25% imp	, HSG D				
	1	98,417	64 V	Veighted A	verage					
	1	48,813	P	ervious Ar	ea					
		49,604	Ir	npervious	Area					
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	8.2	50	0.0200	0.10		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.20"				
	4.3	550	0.0200	2.12		Shallow Concentrated Flow,				
						Grassed Waterway Kv= 15.0 fps				
	1.7	90	0.0300	0.87		Shallow Concentrated Flow,				
_						Woodland Kv= 5.0 fps				
	14.2	690	Total							

Subcatchment 4S: Offsite Properties

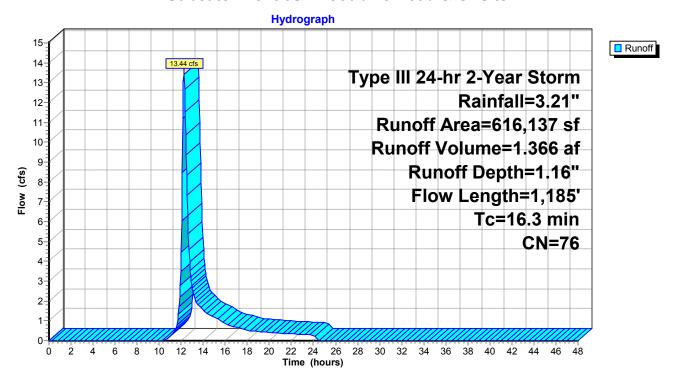
Prepared by Gala Simon Associates

Page 4

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Subcatchment 6S: Woodbine Road & Offsite


Runoff = 13.44 cfs @ 12.24 hrs, Volume= 1.366 af, Depth= 1.16"

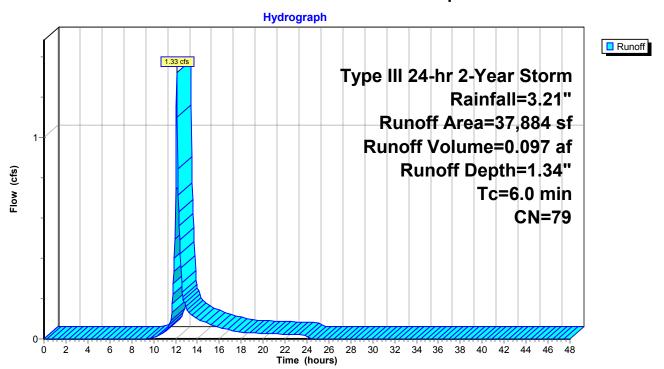
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

A	rea (sf)	CN D	escription						
3	862,024	73 V	Voods, Fai	r, HSG C					
2	254,113	80 1	30 1/2 acre lots, 25% imp, HSG C						
	316,137		Veighted A						
	52,609		ervious Ar						
	63,528	Ir	npervious	Area					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description				
4.9	50	0.2000	0.17	, ,	Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 3.20"				
3.4	125	0.0150	0.61		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
1.8	200	0.0150	1.84		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
3.7	710	0.0250	3.21		Shallow Concentrated Flow,				
2.5	100	0.0100	0.67		Paved Kv= 20.3 fps				
2.5	100	0.0180	0.67		Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
16.2	1 105	Total			vvoodiand Rv- 3.0 ips				
16.3	1,185	Total							

3/1/2017

Subcatchment 6S: Woodbine Road & Offsite

3/1/2017


Subcatchment 7S: Site to Woodbine Depression

Runoff = 1.33 cfs @ 12.10 hrs, Volume= 0.097 af, Depth= 1.34"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

A	rea (sf)	CN	Description		
	179	98	Paved park	ing & roofs	
	37,705	79	Woods, Fai	r, HSG D	
	37,884	79	Weighted A	verage	
	37,705		Pervious Ar	ea	
	179		mpervious	Area	
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
6.0					Direct Entry,

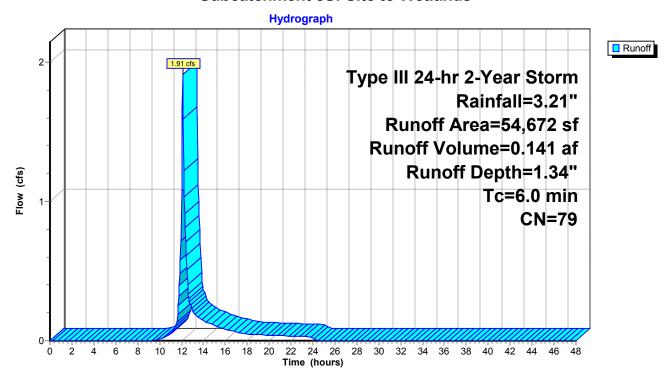
Subcatchment 7S: Site to Woodbine Depression

Prepared by Gala Simon Associates

Page 7

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 8S: Site to Wetlands

Runoff = 1.91 cfs @ 12.10 hrs, Volume= 0.141 af, Depth= 1.34"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

A	rea (sf)	CN E	escription				
	54,672	79 V	Woods, Fair, HSG D				
	54,672	F	ervious Ar	ea			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Subcatchment 8S: Site to Wetlands

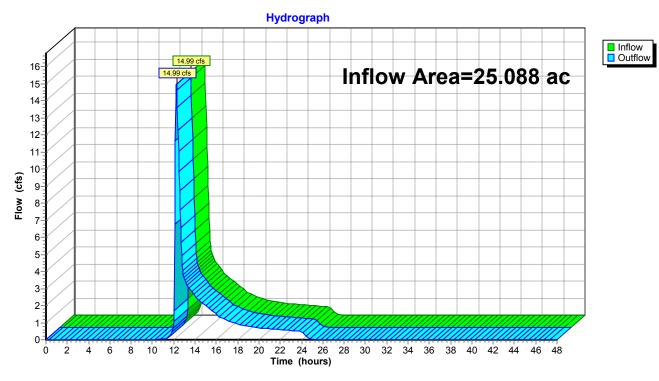
Prepared by Gala Simon Associates

Page 8

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Reach 1R: IVW


Inflow Area = 25.088 ac, Inflow Depth = 0.86" for 2-Year Storm event

Inflow 1.805 af

14.99 cfs @ 12.26 hrs, Volume= 14.99 cfs @ 12.26 hrs, Volume= Outflow 1.805 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach 1R: IVW

Prepared by Gala Simon Associates

Page 9

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Inflow
Outflow

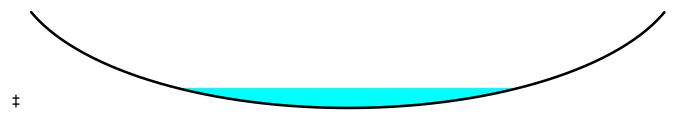
Reach 7R: Swale

Inflow Area = 4.555 ac, Inflow Depth = 0.56" for 2-Year Storm event

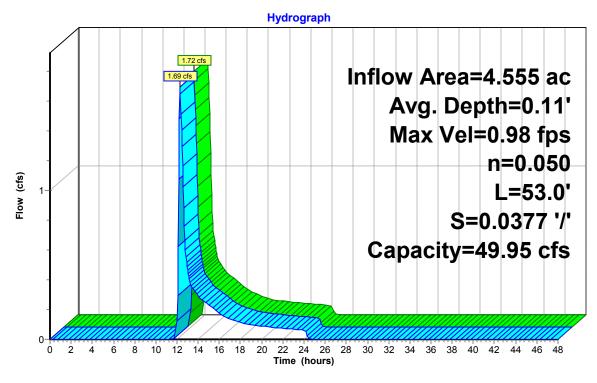
Inflow = 1.72 cfs @ 12.25 hrs, Volume= 0.214 af

Outflow = 1.69 cfs @ 12.28 hrs, Volume= 0.214 af, Atten= 1%, Lag= 1.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs


Max. Velocity= 0.98 fps, Min. Travel Time= 0.9 min Avg. Velocity = 0.45 fps, Avg. Travel Time= 2.0 min

Peak Storage= 93 cf @ 12.26 hrs, Average Depth at Peak Storage= 0.11' Bank-Full Depth= 0.50', Capacity at Bank-Full= 49.95 cfs


54.00' x 0.50' deep Parabolic Channel, n=0.050

Length= 53.0' Slope= 0.0377 '/'

Inlet Invert= 88.00', Outlet Invert= 86.00'

Reach 7R: Swale

Prepared by Gala Simon Associates

Page 10

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 3P: Site Depression

Inflow Area = 8.819 ac, Inflow Depth = 0.82" for 2-Year Storm event

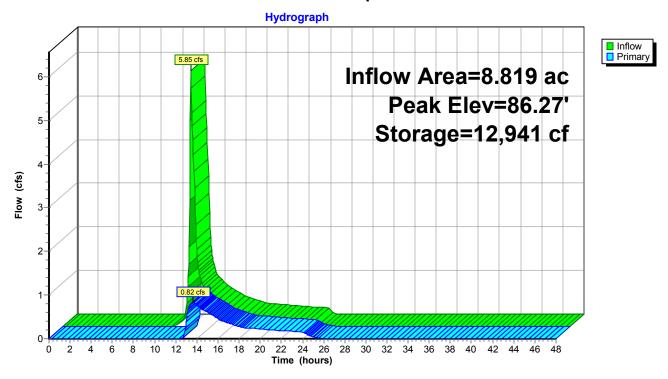
Inflow = 5.85 cfs @ 12.11 hrs, Volume= 0.605 af

Outflow = 0.82 cfs @ 13.61 hrs, Volume= 0.335 af, Atten= 86%, Lag= 90.1 min

Primary = 0.82 cfs @ 13.61 hrs, Volume= 0.335 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 86.27' @ 13.61 hrs Surf.Area= 52,822 sf Storage= 12,941 cf

Plug-Flow detention time= 276.9 min calculated for 0.335 af (55% of inflow)


Center-of-Mass det. time= 145.4 min (1,022.1 - 876.6)

Volume	Inve	rt Ava	il.Storage	Storage Description					
#1	86.0	0'	58,179 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)			
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
86.0 86.2 87.0	25	41,988 52,276 72,037	830.0 995.0 1,166.0	0 11,760 46,420	0 11,760 58,179	41,988 65,952 95,369			
Device	Routing	,	,	et Devices	56,179	95,369			
#1	Primary		6.25' 90.0 Hea	d' long x 30.0' bread (feet) 0.20 0.40	0.60 0.80 1.00	ed Rectangular Weir 1.20 1.40 1.60 63 2.64 2.64 2.63	,		

Primary OutFlow Max=0.81 cfs @ 13.61 hrs HW=86.27' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.81 cfs @ 0.40 fps)

3/1/2017

Pond 3P: Site Depression

Prepared by Gala Simon Associates

Page 12

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 4P: Woodbine Depression

Inflow Area = 15.014 ac, Inflow Depth = 1.17" for 2-Year Storm event

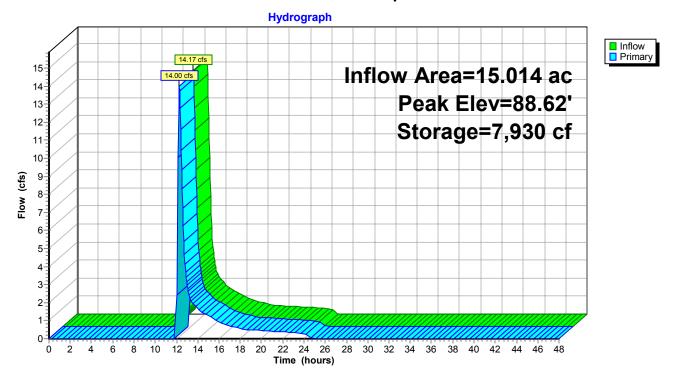
Inflow = 14.17 cfs @ 12.24 hrs, Volume= 1.464 af

Outflow = 14.00 cfs @ 12.27 hrs, Volume= 1.329 af, Atten= 1%, Lag= 1.9 min

Primary = 14.00 cfs @ 12.27 hrs, Volume= 1.329 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 88.62' @ 12.27 hrs Surf.Area= 17,620 sf Storage= 7,930 cf

Plug-Flow detention time= 66.1 min calculated for 1.329 af (91% of inflow) Center-of-Mass det. time= 20.5 min (884.2 - 863.7)


Volume	Inve	ert Ava	il.Storage	Storage Description					
#1	88.0	00'	15,739 cf	Custom Stage D	ata (Irregular) List	ted below (Recalc)			
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
88.0 88.5 89.0	50	8,161 15,722 24,056	367.0 518.0 630.0	0 5,868 9,871	5,868 15,739	8,161 18,798 29,033			
Device	Routing	Ir	vert Outle	et Devices					
#1	Primary	38	Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	ted Rectangular W 1.20 1.40 1.60 63 2.64 2.64 2.63			

Primary OutFlow Max=13.85 cfs @ 12.27 hrs HW=88.62' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 13.85 cfs @ 0.94 fps)

Page 13 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

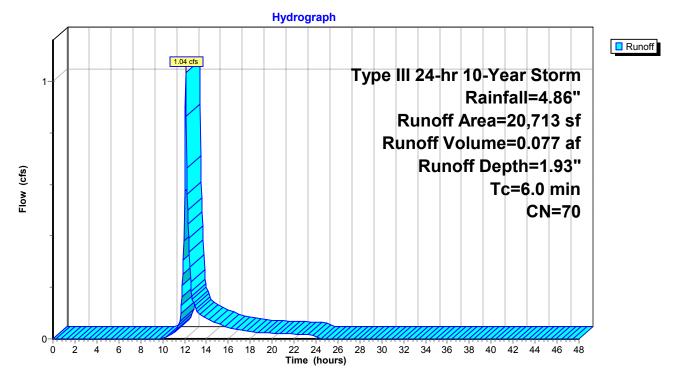
Pond 4P: Woodbine Depression

Existing Conditions 10 Year Storm Event

Prepared by Gala Simon Associates
HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Page 1

3/1/2017


Subcatchment 1S: Site to Marsh Street

Runoff = 1.04 cfs @ 12.10 hrs, Volume= 0.077 af, Depth= 1.93"

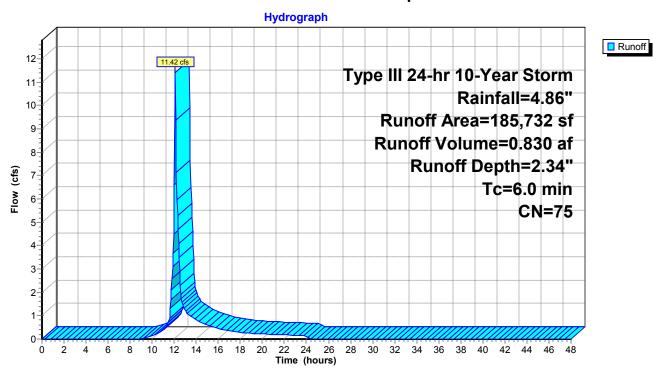
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

A	rea (sf)	CN	Description						
	5,036	98	Paved park	ing & roofs	S				
	15,677	61	>75% Gras	s cover, Go	Good, HSG B				
	20,713	70	Weighted A	Weighted Average					
	15,677		Pervious Area						
	5,036		mpervious	Area					
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	·				
6.0					Direct Entry,				

Subcatchment 1S: Site to Marsh Street

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 3S: Site to Depression

Runoff = 11.42 cfs @ 12.09 hrs, Volume= 0.830 af, Depth= 2.34"

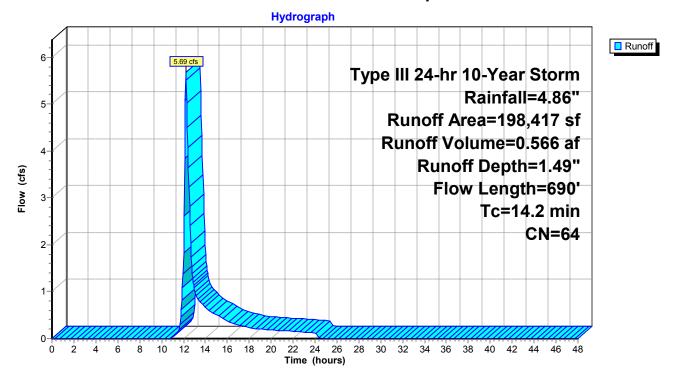
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

Area (sf)	CN	Description					
1,495	98	Paved roads w/curbs & sewers					
13,425	39	>75% Grass cover, Good, HSG A					
6,625	80	>75% Grass cover, Good, HSG D					
4,530	36	Woods, Fair, HSG A					
159,657	79	Woods, Fair, HSG D					
185,732	75	Weighted Average					
184,237		Pervious Area					
1,495		Impervious Area					
Tc Length (min) (feet)	Slop (ft/						
6.0		Direct Entry,	_				

Subcatchment 3S: Site to Depression

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 4S: Offsite Properties

Runoff = 5.69 cfs @ 12.22 hrs, Volume= 0.566 af, Depth= 1.49"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

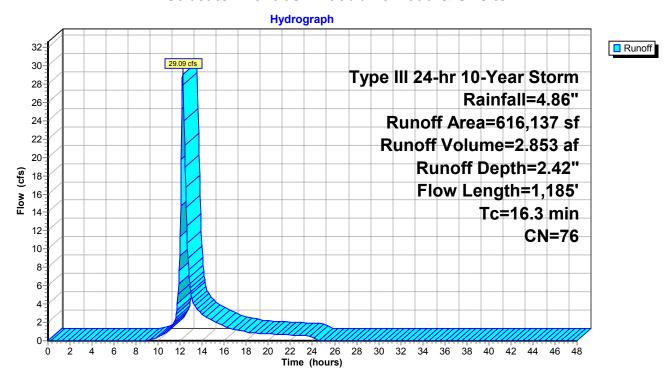
	Ar	rea (sf)	CN E	escription						
	1	32,278	54 1	54 1/2 acre lots, 25% imp, HSG A						
		41,772	85 1	/2 acre lots	s, 25% imp	, HSG D				
		24,367	85 1	/2 acre lots	s, 25% imp	, HSG D				
	1	98,417	64 V	Veighted A	verage					
	1	48,813	F	Pervious Ar	rea					
		49,604	li	mpervious	Area					
	Tc	Length	Slope	Velocity	Capacity	Description				
<u>(</u> n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	8.2	50	0.0200	0.10		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.20"				
	4.3	550	0.0200	2.12		Shallow Concentrated Flow,				
						Grassed Waterway Kv= 15.0 fps				
	1.7	90	0.0300	0.87		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
1	14.2	690	Total							

Subcatchment 4S: Offsite Properties

Page 4 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Subcatchment 6S: Woodbine Road & Offsite


Runoff = 29.09 cfs @ 12.23 hrs, Volume= 2.853 af, Depth= 2.42"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

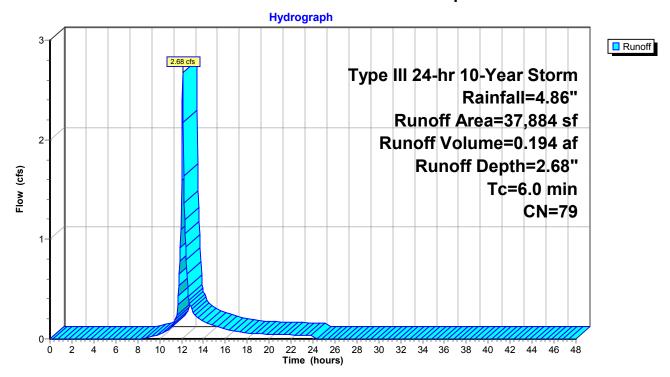
A	rea (sf)	CN D	Description						
3	362,024	73 V	Voods, Fai	r, HSG C					
2	254,113	80 1	80 1/2 acre lots, 25% imp, HSG C						
	316,137		Veighted A						
5	552,609		Pervious Ar						
	63,528	Ir	mpervious	Area					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
4.9	50	0.2000	0.17	, ,	Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 3.20"				
3.4	125	0.0150	0.61		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
1.8	200	0.0150	1.84		Shallow Concentrated Flow,				
0.7	740	0.0050	2.04		Grassed Waterway Kv= 15.0 fps				
3.7	710	0.0250	3.21		Shallow Concentrated Flow,				
2.5	100	0.0180	0.67		Paved Kv= 20.3 fps Shallow Concentrated Flow,				
2.0	100	0.0100	0.07		Woodland Kv= 5.0 fps				
16.3	1,185	Total							

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Subcatchment 6S: Woodbine Road & Offsite

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 7S: Site to Woodbine Depression

Runoff = 2.68 cfs @ 12.09 hrs, Volume= 0.194 af, Depth= 2.68"

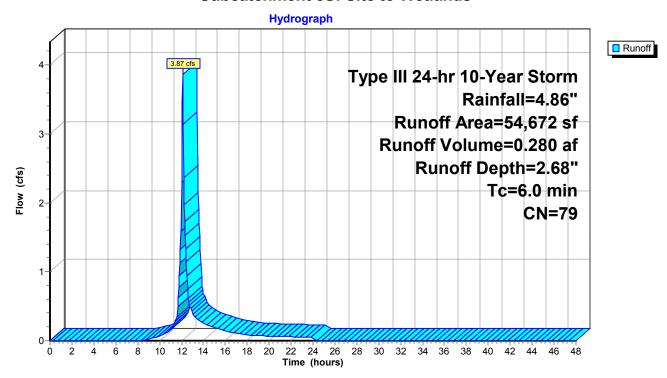
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

Are	a (sf)	CN	Description					
	179	98	Paved parking & roofs					
3	7,705	79	Woods, Fai	r, HSG D				
3.	7,884	79	Weighted A	verage				
3	7,705		Pervious Ar	ea				
	179		Impervious	Area				
Tc I (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 7S: Site to Woodbine Depression

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 8S: Site to Wetlands

Runoff = 3.87 cfs @ 12.09 hrs, Volume= 0.280 af, Depth= 2.68"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

A	rea (sf)	CN [Description					
	54,672	79 V	Woods, Fair, HSG D					
	54,672	F	Pervious Ar	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 8S: Site to Wetlands

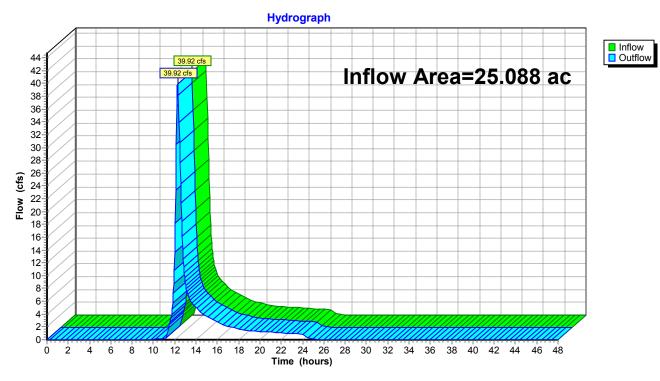
Prepared by Gala Simon Associates

Page 8

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Reach 1R: IVW


Inflow Area = 25.088 ac, Inflow Depth = 2.07" for 10-Year Storm event

Inflow = 39.92 cfs @ 12.27 hrs, Volume= 4.319 af

Outflow = 39.92 cfs @ 12.27 hrs, Volume= 4.319 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach 1R: IVW

Prepared by Gala Simon Associates

Page 9

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

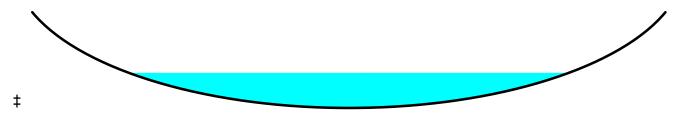
Reach 7R: Swale

Inflow Area = 4.555 ac, Inflow Depth = 1.49" for 10-Year Storm event

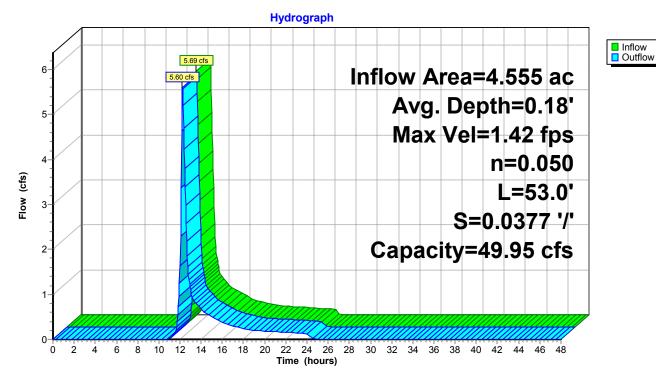
Inflow = 5.69 cfs @ 12.22 hrs, Volume= 0.566 af

Outflow = 5.60 cfs @ 12.24 hrs, Volume= 0.566 af, Atten= 2%, Lag= 1.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs


Max. Velocity= 1.42 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.56 fps, Avg. Travel Time= 1.6 min

Peak Storage= 212 cf @ 12.22 hrs, Average Depth at Peak Storage= 0.18' Bank-Full Depth= 0.50', Capacity at Bank-Full= 49.95 cfs


54.00' x 0.50' deep Parabolic Channel, n= 0.050

Length= 53.0' Slope= 0.0377 '/'

Inlet Invert= 88.00', Outlet Invert= 86.00'

Reach 7R: Swale

Prepared by Gala Simon Associates

Page 10

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 3P: Site Depression

Inflow Area = 8.819 ac, Inflow Depth = 1.90" for 10-Year Storm event

Inflow = 14.88 cfs @ 12.11 hrs, Volume= 1.396 af

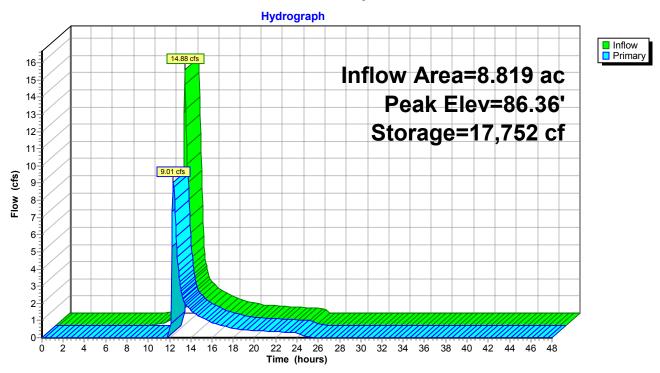
Outflow = 9.01 cfs @ 12.37 hrs, Volume= 1.126 af, Atten= 39%, Lag= 15.5 min

Primary = 9.01 cfs @ 12.37 hrs, Volume= 1.126 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 86.36' @ 12.37 hrs Surf.Area= 55,019 sf Storage= 17,752 cf

Plug-Flow detention time= 133.4 min calculated for 1.125 af (81% of inflow)

Center-of-Mass det. time= 55.0 min (906.8 - 851.9)


Volume	Inve	ert Ava	il.Storage	Storage Description					
#1	86.0	0'	58,179 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)			
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
86.0 86.2 87.0	25	41,988 52,276 72,037	830.0 995.0 1,166.0	0 11,760 46,420	0 11,760 58,179	41,988 65,952 95,369			
Device	Routing	,	,	et Devices	50,179	95,369			
#1	Primary	<u>J</u>							

Primary OutFlow Max=8.94 cfs @ 12.37 hrs HW=86.36' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 8.94 cfs @ 0.89 fps)

Page 11 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 3P: Site Depression

Prepared by Gala Simon Associates

Page 12

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 4P: Woodbine Depression

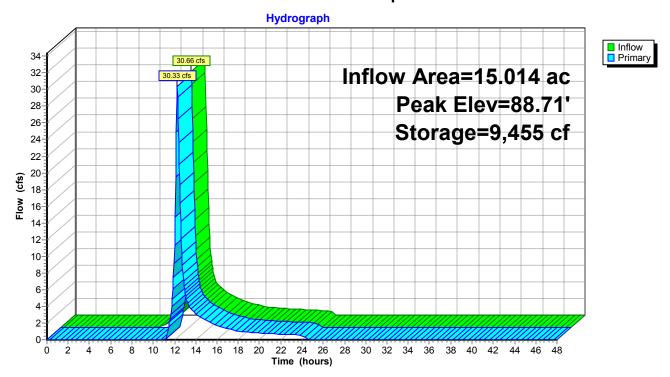
Inflow Area = 15.014 ac, Inflow Depth = 2.44" for 10-Year Storm event

Inflow = 30.66 cfs @ 12.22 hrs, Volume= 3.048 af

Outflow = 30.33 cfs @ 12.25 hrs, Volume= 2.913 af, Atten= 1%, Lag= 1.7 min

Primary = 30.33 cfs @ 12.25 hrs, Volume= 2.913 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 88.71' @ 12.25 hrs Surf.Area= 18,960 sf Storage= 9,455 cf


Plug-Flow detention time= 37.4 min calculated for 2.913 af (96% of inflow) Center-of-Mass det. time= 13.0 min (855.0 - 842.1)

Volume	Inv	ert Ava	il.Storage	Storage Description				
#1	88.0	00'	15,739 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)		
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
88.0		8,161	367.0	0	0	8,161		
88.5 89.0	-	15,722 24,056	518.0 630.0	5,868 9,871	5,868 15,739	18,798 29,033		
Device	Routing	In	vert Outle	et Devices				
#1	Primary						r	

Primary OutFlow Max=30.28 cfs @ 12.25 hrs HW=88.71' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 30.28 cfs @ 1.22 fps)

3/1/2017

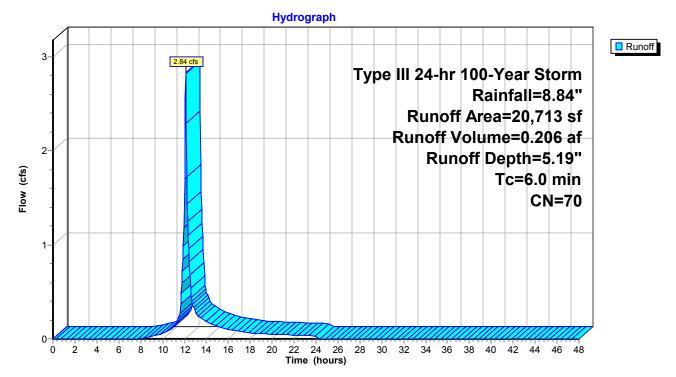
Pond 4P: Woodbine Depression

Existing Conditions 100 Year Storm Event

Prepared by Gala Simon Associates
HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Page 1

3/1/2017


Subcatchment 1S: Site to Marsh Street

Runoff = 2.84 cfs @ 12.09 hrs, Volume= 0.206 af, Depth= 5.19"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

A	rea (sf)	CN	Description							
	5,036	98	Paved parking & roofs							
	15,677	61	>75% Gras	s cover, Go	ood, HSG B					
	20,713	70	Weighted Average							
	15,677		Pervious Area							
	5,036		Impervious Area							
Тс	Length	Slope	,	Capacity	·					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry,					

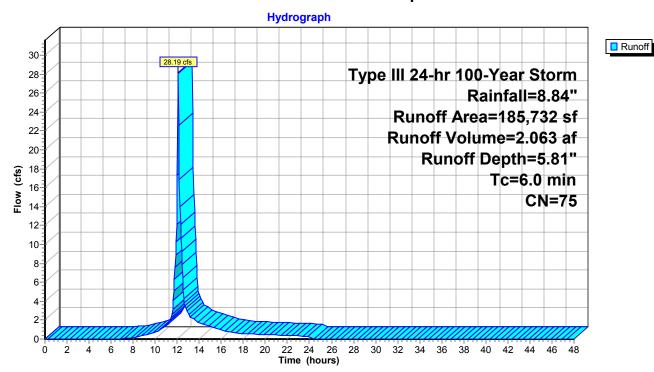
Subcatchment 1S: Site to Marsh Street

Prepared by Gala Simon Associates

Page 2

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 3S: Site to Depression

Runoff = 28.19 cfs @ 12.09 hrs, Volume= 2.063 af, Depth= 5.81"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

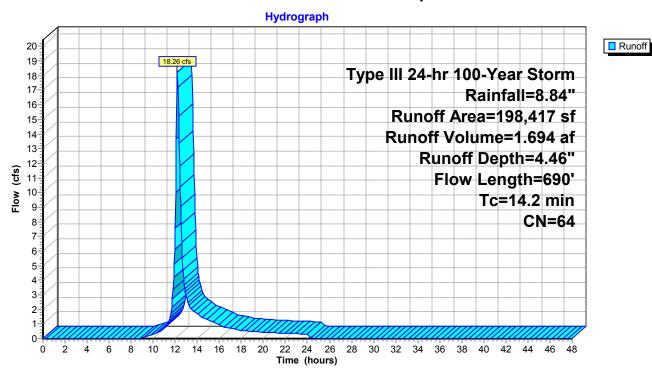
Area (sf)	CN	Description				
1,495	98	Paved road	s w/curbs &	& sewers		
13,425	39	>75% Grass	s cover, Go	ood, HSG A		
6,625	80	>75% Grass	s cover, Go	ood, HSG D		
4,530	36	Woods, Fai	r, HSG A			
159,657	79	Woods, Fai	r, HSG D			
185,732	75	Weighted A	verage			
184,237	184,237 Pervious Area					
1,495		Impervious	Area			
Tc Length (min) (feet)		,	Capacity (cfs)	Description		
6.0	,		, ,	Direct Entry,		

Subcatchment 3S: Site to Depression

Prepared by Gala Simon Associates

Page 3 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 4S: Offsite Properties

Runoff = 18.26 cfs @ 12.20 hrs, Volume= 1.694 af, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

_	A	rea (sf)	CN E	escription			
	1	32,278	54 1	/2 acre lots	s, 25% imp	, HSG A	
		41,772			s, 25% imp		
		24,367	85 1	/2 acre lots	s, 25% imp	, HSG D	
	1	98,417	64 V	Veighted A	verage		
	148,813		P	ervious Ar	ea		
	49,604			mpervious	Area		
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	8.2	50	0.0200	0.10		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.20"	
	4.3	550	0.0200	2.12		Shallow Concentrated Flow,	
						Grassed Waterway Kv= 15.0 fps	
	1.7	90	0.0300	0.87		Shallow Concentrated Flow,	
_						Woodland Kv= 5.0 fps	
	14.2	690	Total				

Subcatchment 4S: Offsite Properties

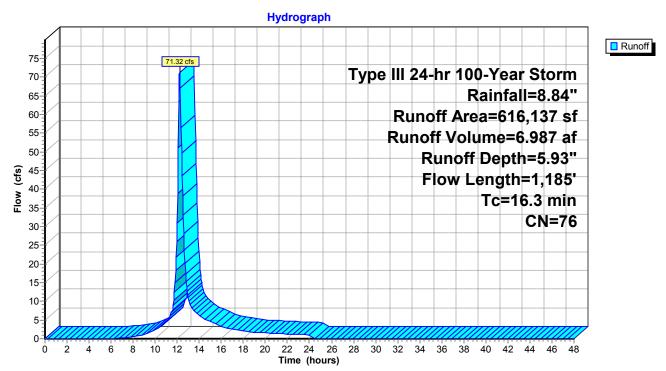
Prepared by Gala Simon Associates
HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Page 4

3/1/2017

Subcatchment 6S: Woodbine Road & Offsite

Runoff = 71.32 cfs @ 12.22 hrs, Volume= 6.987 af, Depth= 5.93"

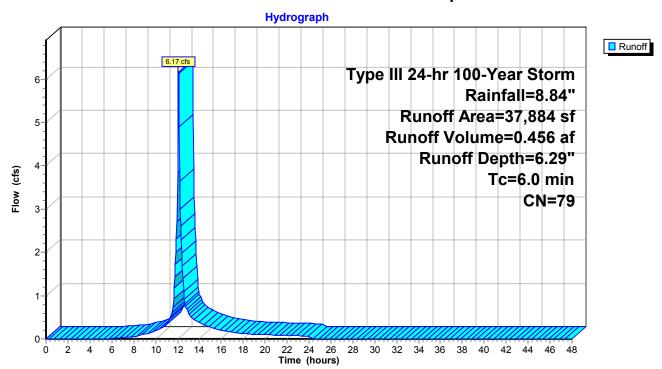

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

A	rea (sf)	CN D	escription		
3	862,024	73 V	Voods, Fai	r, HSG C	
2	254,113	80 1.	/2 acre lots	s, 25% imp	, HSG C
	316,137		Veighted A		
	52,609		ervious Ar		
	63,528	Ir	npervious	Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
4.9	50	0.2000	0.17	, ,	Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
3.4	125	0.0150	0.61		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.8	200	0.0150	1.84		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
3.7	710	0.0250	3.21		Shallow Concentrated Flow,
2.5	100	0.0100	0.67		Paved Kv= 20.3 fps
2.5	100	0.0180	0.67		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
16.2	1 105	Total			vvoodiand Rv- 3.0 ips
16.3	1,185	Total			

Page 5 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 7S: Site to Woodbine Depression

Runoff = 6.17 cfs @ 12.09 hrs, Volume= 0.456 af, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

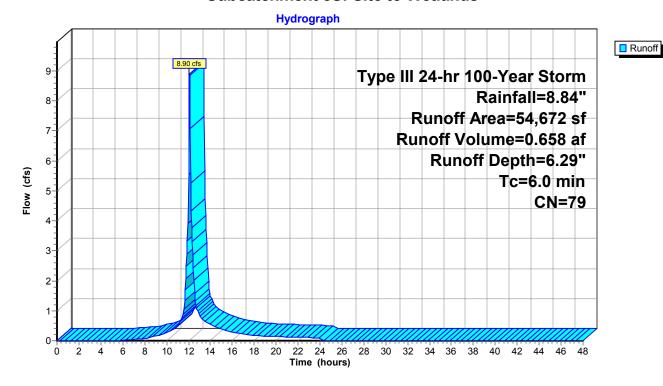
Are	a (sf)	CN	Description					
	179	98	Paved park	ing & roofs				
3	7,705	79	Woods, Fai	r, HSG D				
3	7,884	79	Weighted A	verage				
3	7,705		Pervious Ar					
	179		Impervious Area					
Tc l (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 7S: Site to Woodbine Depression

Prepared by Gala Simon Associates

Page 7 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 8S: Site to Wetlands

Runoff = 8.90 cfs @ 12.09 hrs, Volume= 0.658 af, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

	Α	rea (sf)	CN	Description					
		54,672	79	Woods, Fair, HSG D					
		54,672		Pervious A	rea				
(m		Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description			
6	6.6					Direct Entry,			

Subcatchment 8S: Site to Wetlands

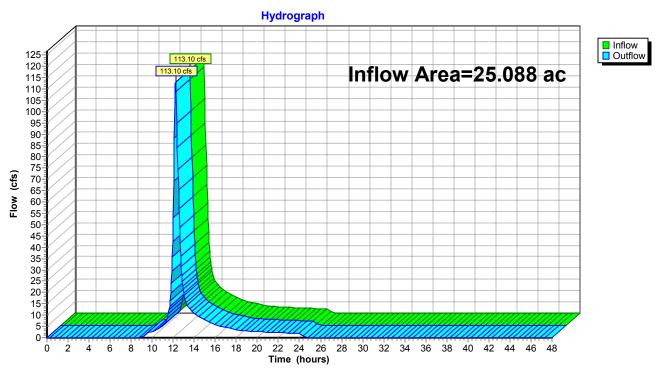
Prepared by Gala Simon Associates

Page 8

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Reach 1R: IVW


Inflow Area = 25.088 ac, Inflow Depth = 5.48" for 100-Year Storm event

Inflow = 113.10 cfs @ 12.23 hrs, Volume= 11.454 af

Outflow = 113.10 cfs @ 12.23 hrs, Volume= 11.454 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach 1R: IVW

Prepared by Gala Simon Associates

Page 9 3/1/2017

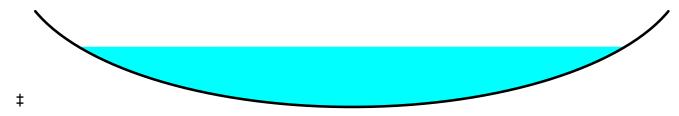
HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Reach 7R: Swale

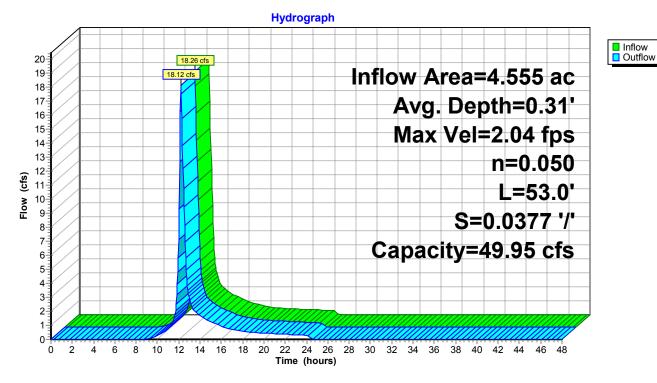
Inflow Area = 4.555 ac, Inflow Depth = 4.46" for 100-Year Storm event

Inflow = 18.26 cfs @ 12.20 hrs, Volume= 1.694 af

Outflow = 18.12 cfs @ 12.21 hrs, Volume= 1.694 af, Atten= 1%, Lag= 0.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.04 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.73 fps, Avg. Travel Time= 1.2 min


Peak Storage= 475 cf @ 12.21 hrs, Average Depth at Peak Storage= 0.31' Bank-Full Depth= 0.50', Capacity at Bank-Full= 49.95 cfs

 $54.00' \times 0.50'$ deep Parabolic Channel, n= 0.050 Length= 53.0' Slope= 0.0377 '/'

Inlet Invert= 88.00', Outlet Invert= 86.00'

Reach 7R: Swale

Prepared by Gala Simon Associates

Page 10

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 3P: Site Depression

Inflow Area = 8.819 ac, Inflow Depth = 5.11" for 100-Year Storm event

Inflow = 41.00 cfs @ 12.11 hrs, Volume= 3.757 af

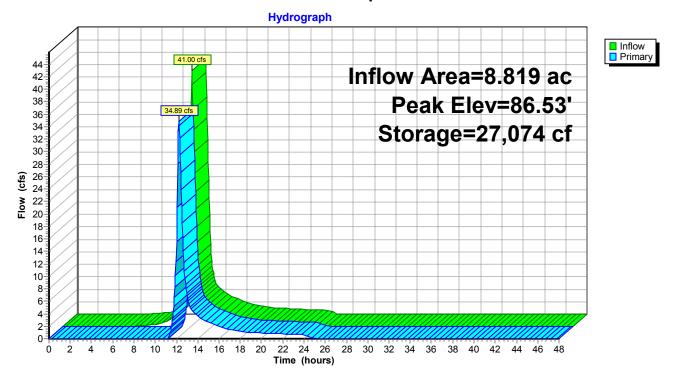
Outflow = 34.89 cfs @ 12.21 hrs, Volume= 3.487 af, Atten= 15%, Lag= 5.8 min

Primary = 34.89 cfs @ 12.21 hrs, Volume= 3.487 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 86.53' @ 12.21 hrs Surf.Area= 59,156 sf Storage= 27,074 cf

Plug-Flow detention time= 67.4 min calculated for 3.487 af (93% of inflow)

Center-of-Mass det. time= 29.6 min (853.9 - 824.3)


Volume	Inve	ert Avai	I.Storage	Storage Description						
#1	86.0	0'	58,179 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)				
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
86.0 86.2 87.0	25	41,988 52,276 72,037	830.0 995.0 1,166.0	0 11,760 46,420	0 11,760 58,179	41,988 65,952 95,369				
Device	Routing	In	vert Outle	et Devices						
#1	Primary									

Primary OutFlow Max=34.71 cfs @ 12.21 hrs HW=86.52' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 34.71 cfs @ 1.41 fps)

Page 11 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 3P: Site Depression

Prepared by Gala Simon Associates

Page 12

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 4P: Woodbine Depression

Inflow Area = 15.014 ac, Inflow Depth = 5.95" for 100-Year Storm event

Inflow = 74.65 cfs @ 12.22 hrs, Volume= 7.443 af

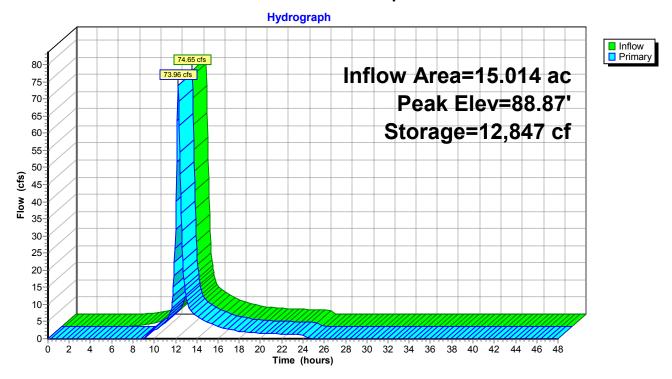
Outflow = 73.96 cfs @ 12.24 hrs, Volume= 7.309 af, Atten= 1%, Lag= 1.4 min

Primary = 73.96 cfs @ 12.24 hrs, Volume= 7.309 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 88.87' @ 12.24 hrs Surf.Area= 21,785 sf Storage= 12,847 cf

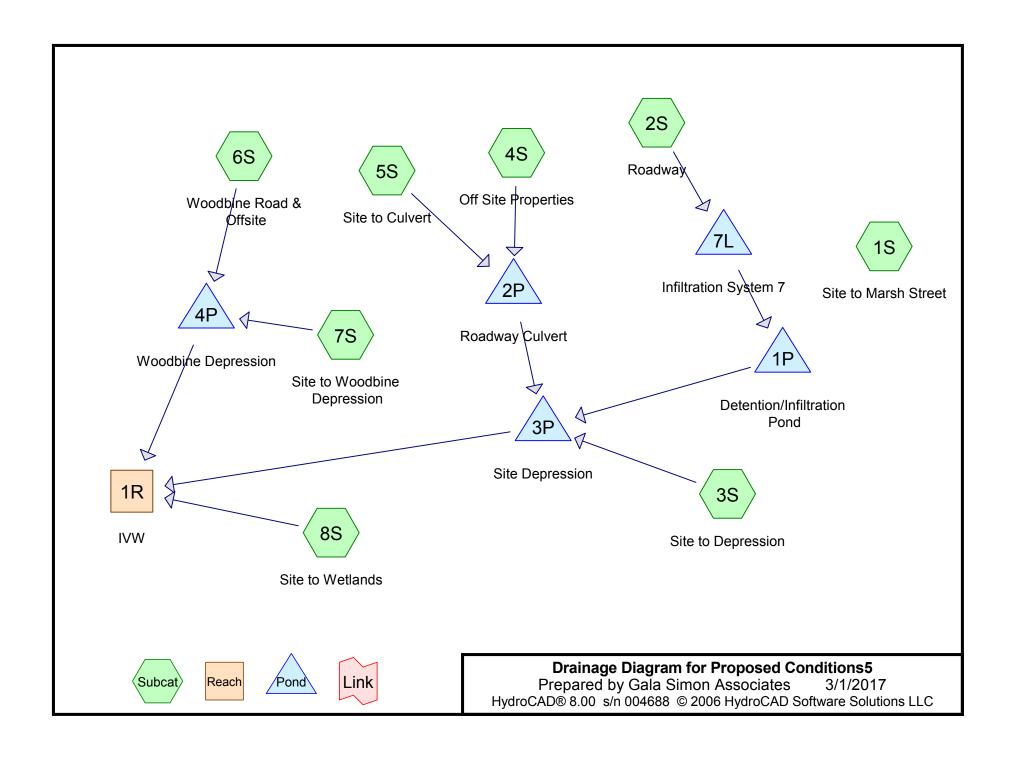
Plug-Flow detention time= 19.6 min calculated for 7.309 af (98% of inflow)

Center-of-Mass det. time= 8.6 min (825.2 - 816.6)


Volume	Inv	ert Avai	I.Storage	Storage Description						
#1	88.0	00'	15,739 cf	Custom Stage Da	ita (Irregular) List	ed below (Recalc)				
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
88.0 88.5 89.0	50	8,161 15,722 24,056	367.0 518.0 630.0	0 5,868 9,871	0 5,868 15,739	8,161 18,798 29,033				
Device	Routing	In	vert Outle	et Devices						
#1	Primary	88	Head	d (feet) 0.20 0.40	0.60 0.80 1.00	ted Rectangular Weir 1.20 1.40 1.60 63 2.64 2.64 2.63				

Primary OutFlow Max=73.43 cfs @ 12.24 hrs HW=88.87' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 73.43 cfs @ 1.65 fps)

Page 13 3/1/2017


HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 4P: Woodbine Depression

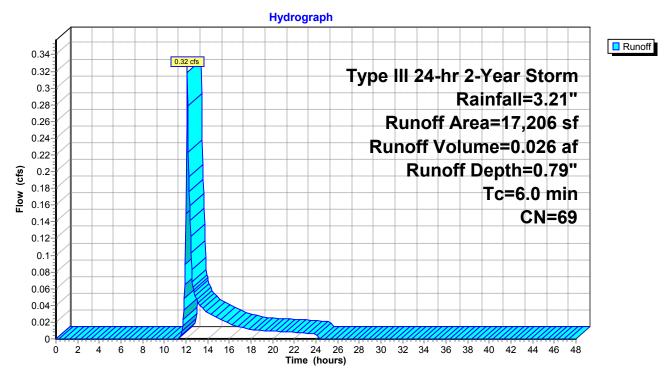
Appendix B Proposed Conditions

Proposed Conditions 2 Year Storm Event

Page 1

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 1S: Site to Marsh Street

Runoff = 0.32 cfs @ 12.11 hrs, Volume= 0.026 af, Depth= 0.79"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

Aı	rea (sf)	CN	Description					
	13,418	61	>75% Gras	s cover, Go	ood, HSG B			
	3,788	98	Paved road	s w/curbs 8	& sewers			
	17,206	69	Weighted A	Weighted Average				
	13,418		Pervious Area					
	3,788		Impervious	Area				
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	•			
6.0					Direct Entry,			

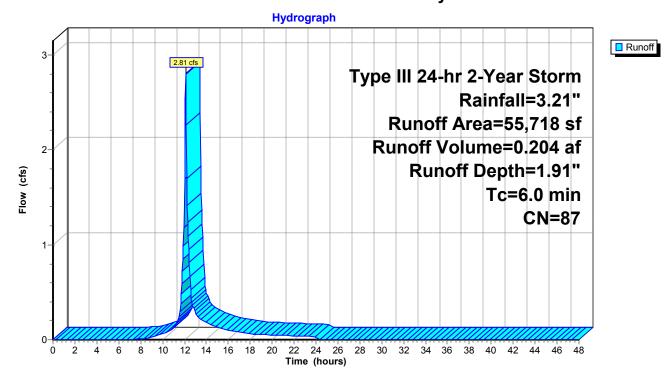
Subcatchment 1S: Site to Marsh Street

Prepared by Gala Simon Associates

Page 2

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 2S: Roadway

Runoff = 2.81 cfs @ 12.09 hrs, Volume= 0.204 af, Depth= 1.91"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

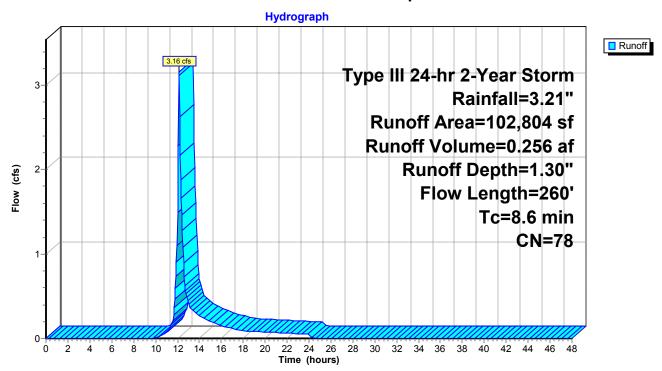
A	rea (sf)	CN	Description					
	4,421	39	>75% Gras	s cover, Go	ood, HSG A			
	31,401	98	Paved park	ing & roofs	}			
	19,896	80	>75% Gras	s cover, Go	ood, HSG D			
	55,718	87	Weighted Average					
	24,317		Pervious Area					
	31,401		Impervious	Area				
_		01			5			
Tc	Length	Slope	,	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Subcatchment 2S: Roadway

Page 3

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 3S: Site to Depression

Runoff = 3.16 cfs @ 12.13 hrs, Volume= 0.256 af, Depth= 1.30"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

A	rea (sf)	CN E	escription						
	1,407	98 F	aved park	ing & roofs					
	3,263	39 >	75% Grass cover, Good, HSG A						
	34,972	80 >	75% Gras	s cover, Go	ood, HSG D				
	63,162	79 V	Voods, Fai	r, HSG D					
1	02,804	78 V	Veighted A	verage					
1	01,397	F	ervious Ar	ea					
	1,407	lı	npervious	Area					
_									
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
7.0	50	0.0300	0.12		Sheet Flow,				
					Grass: Dense n= 0.240 P2= 3.20"				
1.1	175	0.0300	2.60		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
0.5	35	0.0500	1.12		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
8.6	260	Total							

Subcatchment 3S: Site to Depression

Prepared by Gala Simon Associates

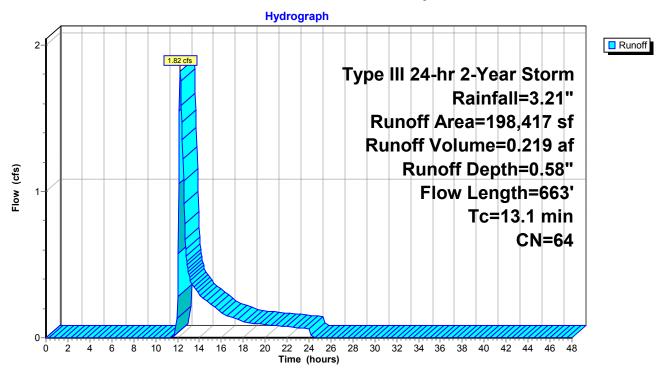
Page 4

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Subcatchment 4S: Off Site Properties

Runoff = 1.82 cfs @ 12.23 hrs, Volume= 0.219 af, Depth= 0.58"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

A	rea (sf)	CN D	escription		
	32,278			s, 25% imp,	
	41,772			s, 25% imp,	
	24,367	85 1/	2 acre lots	s, 25% imp,	HSG D
1	98,417	64 W	eighted A	verage	
1	48,813	Р	ervious Ar	ea	
	49,604	In	npervious	Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.2	50	0.0200	0.10		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.20"
4.3	550	0.0200	2.12		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
0.2	16	0.0100	1.50		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
0.1	30	0.0100	6.44	11.38	Circular Channel (pipe), Culvert
					Diam= 18.0" Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.012 Concrete pipe, finished
0.3	17	0.0300	0.87		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
13.1	663	Total			

Page 5 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Subcatchment 4S: Off Site Properties

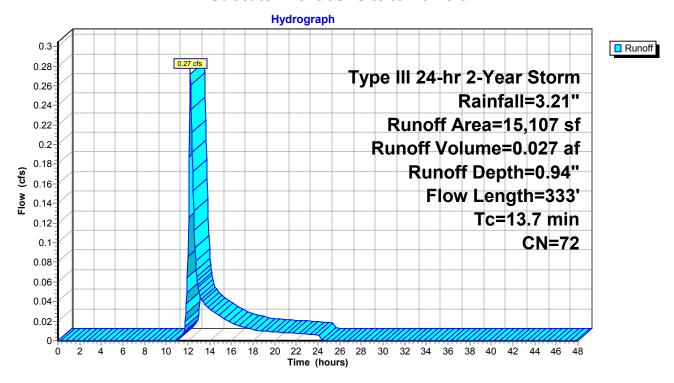
Prepared by Gala Simon Associates

Page 6 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Subcatchment 5S: Site to Culvert

Runoff = 0.27 cfs @ 12.21 hrs, Volume= 0.027 af, Depth= 0.94"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

A	rea (sf)	CN [Description					
	546	98 F	Paved parking & roofs					
	1,924	79 \	Noods, Fai	r, HSG D				
	3,142	39 >	>75% Gras	s cover, Go	ood, HSG A			
	9,495	80 >	>75% Gras	s cover, Go	ood, HSG D			
	15,107	72 \	Weighted A	verage				
	14,561	F	Pervious Ar	ea				
	546	I	mpervious	Area				
Tc	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
10.8	50	0.0100	0.08		Sheet Flow,			
					Grass: Dense n= 0.240 P2= 3.20"			
2.6	231	0.0100	1.50		Shallow Concentrated Flow,			
					Grassed Waterway Kv= 15.0 fps			
0.1	38	0.0150	7.28	12.87	Circular Channel (pipe),			
					Diam= 18.0" Area= 1.8 sf Perim= 4.7' r= 0.38'			
0.0	4.4	0.0400	4.50		n= 0.013 Corrugated PE, smooth interior			
0.2	14	0.0100	1.50		Shallow Concentrated Flow,			
					Grassed Waterway Kv= 15.0 fps			
13 7	333	Total						

Page 7

3/1/2017

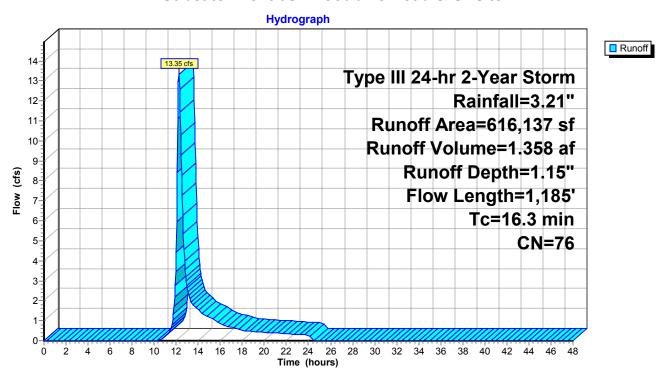
Subcatchment 5S: Site to Culvert

Prepared by Gala Simon Associates

Page 8

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 6S: Woodbine Road & Offsite

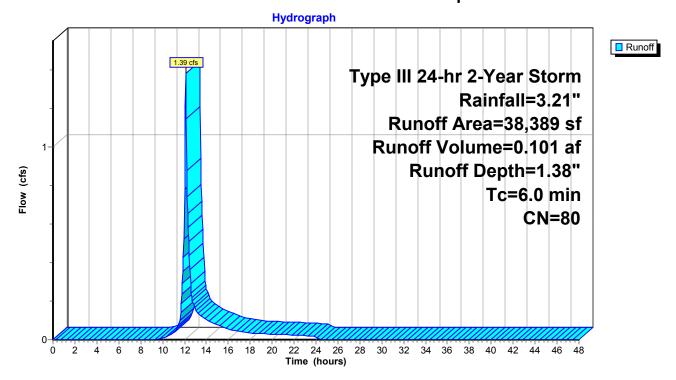
Runoff = 13.35 cfs @ 12.24 hrs, Volume= 1.358 af, Depth= 1.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

A	rea (sf)	CN D	escription					
3	62,024	73 V	√oods, Fai	r, HSG C				
2	54,113	80 1	1/2 acre lots, 25% imp, HSG C					
6	16,137	76 V	Veighted A	verage				
5	52,609	Р	ervious Ar	ea				
	63,528	Ir	npervious	Area				
_								
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.9	50	0.2000	0.17		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.20"			
3.4	125	0.0150	0.61		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
1.8	200	0.0150	1.84		Shallow Concentrated Flow,			
					Grassed Waterway Kv= 15.0 fps			
3.7	710	0.0250	3.21		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
2.5	100	0.0180	0.67		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
16.3	1,185	Total						

Subcatchment 6S: Woodbine Road & Offsite

3/1/2017


Subcatchment 7S: Site to Woodbine Depression

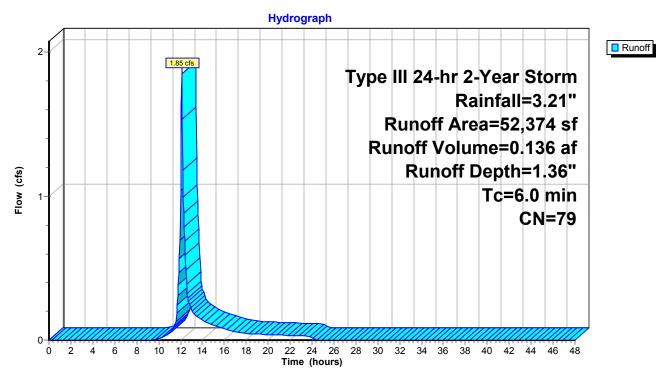
Runoff = 1.39 cfs @ 12.10 hrs, Volume= 0.101 af, Depth= 1.38"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

A	rea (sf)	CN	Description				
	546	98	Paved park	ing & roofs	3		
	25,988	79	Woods, Fai	r, HSG D			
	11,855	80	>75% Gras	s cover, Go	ood, HSG D		
	38,389	80	Weighted Average				
	37,843		Pervious Area				
	546		Impervious	Area			
т.	l 4l-	Olana.	\/a a=!f	0	Description		
Tc	Length	Slope	•	Capacity	·		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry,		

Subcatchment 7S: Site to Woodbine Depression

3/1/2017


Subcatchment 8S: Site to Wetlands

Runoff = 1.85 cfs @ 12.10 hrs, Volume= 0.136 af, Depth= 1.36"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Storm Rainfall=3.21"

rea (sf)	CN	Description					
42,527	79	Woods, Fai	r, HSG D				
9,847	80	>75% Grass	s cover, Go	ood, HSG D			
52,374	79	Weighted A	Weighted Average				
52,374		Pervious Area					
			_				
Length	Slop	e Velocity	Capacity	Description			
(feet)	(ft/ft	(ft/sec)	(cfs)				
•		_		Direct Entry,			
	42,527 9,847 52,374 52,374 Length	42,527 79 9,847 80 52,374 79 52,374 Length Slope	42,527 79 Woods, Fai 9,847 80 >75% Grass 52,374 79 Weighted A 52,374 Pervious Ar Length Slope Velocity	42,527 79 Woods, Fair, HSG D 9,847 80 >75% Grass cover, G 52,374 79 Weighted Average 52,374 Pervious Area Length Slope Velocity Capacity			

Subcatchment 8S: Site to Wetlands

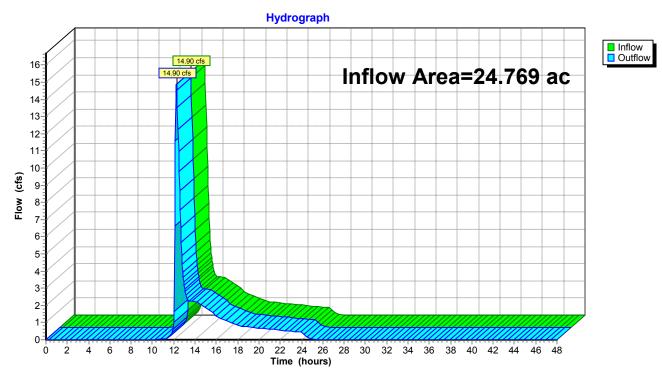
Prepared by Gala Simon Associates

Page 12

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Reach 1R: IVW


Inflow Area = 24.769 ac, Inflow Depth = 0.82" for 2-Year Storm event

Inflow 1.693 af

14.90 cfs @ 12.26 hrs, Volume= 14.90 cfs @ 12.26 hrs, Volume= Outflow 1.693 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach 1R: IVW

Prepared by Gala Simon Associates

Page 13

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 1P: Detention/Infiltration Pond

Inflow Area = 1.279 ac, Inflow Depth = 1.87" for 2-Year Storm event Inflow = 2.81 cfs @ 12.09 hrs, Volume= 0.199 af

Outflow = 0.14 cfs @ 11.25 hrs, Volume= 0.199 af, Atten= 95%, Lag= 0.0 min

Discarded = 0.14 cfs @ 11.25 hrs, Volume= 0.199 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 89.72' @ 14.78 hrs Surf.Area= 3,845 sf Storage= 4,376 cf

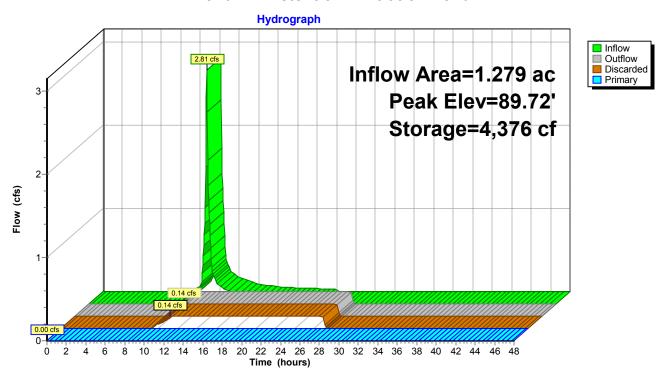
Plug-Flow detention time= 301.1 min calculated for 0.199 af (100% of inflow)

Center-of-Mass det. time= 301.0 min (1,122.5 - 821.5)

Volume	Inve	ert Ava	il.Storage	Storage Description					
#1 88.50' 14,988 cf Custom Stage Data (Ir		ata (Irregular) L	isted below (Recalc)					
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet				
88.5	50	3,498	238.0	0		0 3,498			
89.0	00	3,498	238.0	1,749	1,749	9 3,617			
90.0	00	3,988	251.0	3,740	5,489	9 4,179			
91.0	00	4,502	263.0	4,242	9,73	2 4,733			
92.0	00	6,049	329.0	5,256	14,98	7,856			
Device	Routing	In	vert Outl	et Devices					
#1	Primary	89	9.80' 8.0"	Vert. Orifice C=	0.600		_		
#2	Primary	91	.20' 2.00	' x 2.00' Horiz. Ov	erflow Grate	Limited to weir flow	C = 0.600		
#3	Discarde	d C).00' Exfi	Itration					
				r. (feet) 88.50 88 h. (cfs) 0.000 0.1					

Discarded OutFlow Max=0.14 cfs @ 11.25 hrs HW=88.51' (Free Discharge) **3=Exfiltration** (Custom Controls 0.14 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=88.50' (Free Discharge)


-1=Orifice (Controls 0.00 cfs)

-2=Overflow Grate (Controls 0.00 cfs)

Page 14 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 1P: Detention/Infiltration Pond

Prepared by Gala Simon Associates

Page 15

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 2P: Roadway Culvert

Inflow Area = 4.902 ac, Inflow Depth = 0.60" for 2-Year Storm event

Inflow = 2.11 cfs @ 12.22 hrs, Volume= 0.246 af

Outflow = 2.09 cfs @ 12.23 hrs, Volume= 0.246 af, Atten= 1%, Lag= 0.4 min

Primary = 2.09 cfs @ 12.23 hrs, Volume= 0.246 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 87.51' @ 12.23 hrs Surf.Area= 0 sf Storage= 79 cf

Plug-Flow detention time= 1.7 min calculated for 0.246 af (100% of inflow)

Center-of-Mass det. time= 1.6 min (903.0 - 901.4)

Volume	Inv	ert Avai	I.Storage	Storage Description
#1	87.	25'	4,801 cf	Custom Stage Data Listed below
Elevation (fee		Cum.Store cubic-feet)		
87.2	25	0		
88.0	00	230		
89.5	50	4,801		
ъ .	D (
Device	Routing	<u> </u>	vert Out	let Devices
#1	Primary	87	Out	O" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500 let Invert= 86.69' S= 0.0149 '/' Cc= 0.900

DCVICC	rtouting	IIIVCIL	Outlet Devices
#1	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500 Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished
#2	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished
#3	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500
	-		Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished
#4	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500
	- ,		Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished
#5	Primary	87.25'	1 1 7
"0	1 milary	01.20	Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished
#6	Drimon	07.05!	
#6	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished

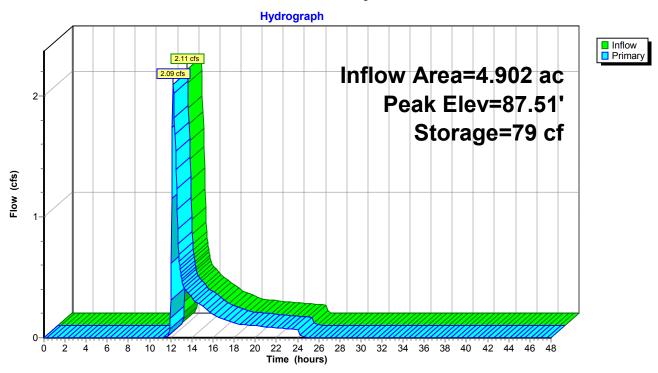
Primary OutFlow Max=2.07 cfs @ 12.23 hrs HW=87.51' (Free Discharge)

—1=Culvert (Inlet Controls 0.35 cfs @ 1.72 fps)

-2=Culvert (Inlet Controls 0.35 cfs @ 1.72 fps)

-3=Culvert (Inlet Controls 0.35 cfs @ 1.72 fps)

-4=Culvert (Inlet Controls 0.35 cfs @ 1.72 fps)


-5=Culvert (Inlet Controls 0.35 cfs @ 1.72 fps)

-6=Culvert (Inlet Controls 0.35 cfs @ 1.72 fps)

Page 16 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 2P: Roadway Culvert

Prepared by Gala Simon Associates

Page 17

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 3P: Site Depression

Inflow Area = 8.541 ac, Inflow Depth = 0.71" for 2-Year Storm event

Inflow = 4.89 cfs @ 12.16 hrs, Volume= 0.502 af

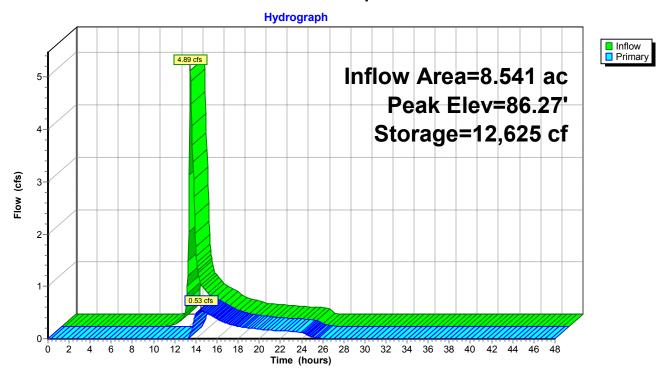
Outflow = 0.53 cfs @ 14.44 hrs, Volume= 0.232 af, Atten= 89%, Lag= 136.7 min

Primary = 0.53 cfs @ 14.44 hrs, Volume= 0.232 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 86.27' @ 14.44 hrs Surf.Area= 52,676 sf Storage= 12,625 cf

Plug-Flow detention time= 329.0 min calculated for 0.232 af (46% of inflow)

Center-of-Mass det. time= 188.2 min (1,064.4 - 876.2)


Volume	Inve	ert Ava	il.Storage	Storage Description						
#1	86.0	0'	58,179 cf	Custom Stage Data (Irregular) Listed below (Recalc)						
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
86.0 86.2 87.0	25	41,988 52,276 72,037	830.0 995.0 1,166.0	0 11,760 46,420	0 11,760 58,179	41,988 65,952 95,369				
Device	Routing	,	,	et Devices	56,179	95,309				
#1	3						r			

Primary OutFlow Max=0.51 cfs @ 14.44 hrs HW=86.27' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.51 cfs @ 0.34 fps)

Page 18 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 3P: Site Depression

Prepared by Gala Simon Associates

Page 19

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 4P: Woodbine Depression

Inflow Area = 15.026 ac, Inflow Depth = 1.17" for 2-Year Storm event

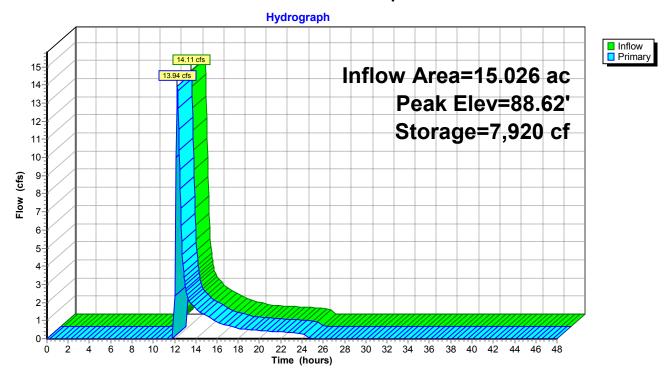
Inflow = 14.11 cfs @ 12.24 hrs, Volume= 1.460 af

Outflow = 13.94 cfs @ 12.27 hrs, Volume= 1.325 af, Atten= 1%, Lag= 1.9 min

Primary = 13.94 cfs @ 12.27 hrs, Volume= 1.325 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 88.62' @ 12.27 hrs Surf.Area= 17,555 sf Storage= 7,920 cf

Plug-Flow detention time= 66.2 min calculated for 1.325 af (91% of inflow) Center-of-Mass det. time= 20.6 min (884.4 - 863.8)


Volume	Inv	ert Ava	il.Storage	Storage Description					
#1	88.0	00'	15,673 cf	Custom Stage Da	ata (Irregular) List	ted below (Recalc)			
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
88.0 88.5 89.0	0	8,161 15,722 23,774	367.0 518.0 614.0	0 5,868 9,805	5,868 15,673	8,161 18,798 27,450			
Device	Routing	Ir	vert Outle	et Devices					
#1	#1 Primary 88.50' 120.0' long x 97.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63								

Primary OutFlow Max=13.79 cfs @ 12.27 hrs HW=88.62' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 13.79 cfs @ 0.94 fps)

Page 20

3/1/2017

Pond 4P: Woodbine Depression

Prepared by Gala Simon Associates

Page 21

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 7L: Infiltration System 7

Inflow Area = 1.279 ac, Inflow Depth = 1.91" for 2-Year Storm event Inflow = 2.81 cfs @ 12.09 hrs, Volume= 0.204 af

Outflow = 2.82 cfs @ 12.09 hrs, Volume= 0.204 af, Atten= 0%, Lag= 0.2 min

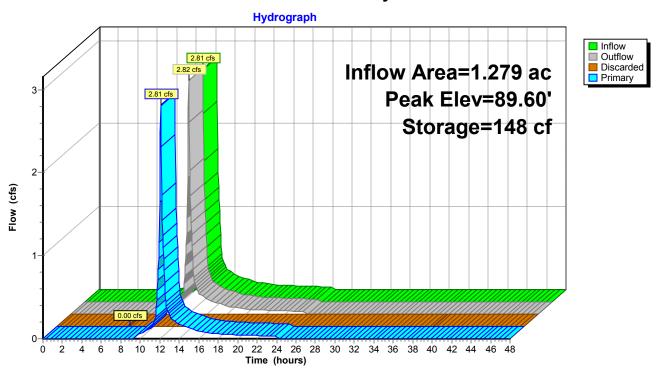
Discarded = 0.00 cfs @ 7.55 hrs, Volume= 0.005 af Primary = 2.81 cfs @ 12.09 hrs, Volume= 0.199 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 89.60' @ 12.09 hrs Surf.Area= 0 sf Storage= 148 cf

Plug-Flow detention time= 15.7 min calculated for 0.204 af (100% of inflow) Center-of-Mass det. time= 16.6 min (835.7 - 819.1)

Volume	Invert	Avail.Storage	Storage Description
#1	86.50'	247 cf	Custom Stage Data Listed below
Elevation (feet)	Cum. (cubic		
86.50 87.00 91.50		0 13 247	

Device	Routing	Invert	Outlet Devices
#1	Discarded	0.00'	Exfiltration
			Elev. (feet) 86.50 86.51 87.00 91.50
			Disch. (cfs) 0.000 0.002 0.002 0.002
#2	Primary	88.74'	18.0" x 45.0' long Outlet CPP, square edge headwall, Ke= 0.500
			Outlet Invert= 88.50' S= 0.0053 '/' Cc= 0.900
			n= 0.009 Corrugated PE, smooth interior


Discarded OutFlow Max=0.00 cfs @ 7.55 hrs HW=86.51' (Free Discharge) **1=Exfiltration** (Custom Controls 0.00 cfs)

Primary OutFlow Max=2.77 cfs @ 12.09 hrs HW=89.59' (Free Discharge) 2=Outlet (Barrel Controls 2.77 cfs @ 3.86 fps)

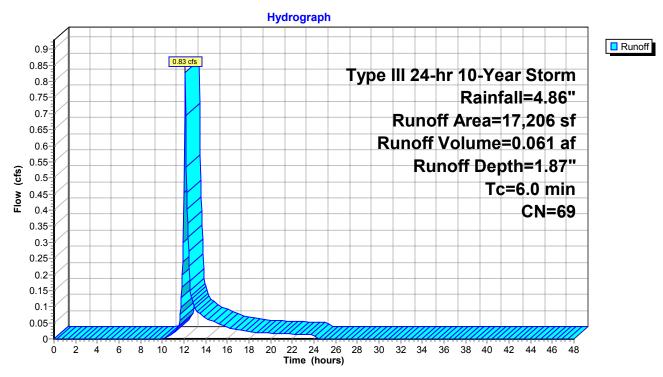
Page 22

3/1/2017

Pond 7L: Infiltration System 7

Proposed Conditions 10 Year Storm Event

3/1/2017


Subcatchment 1S: Site to Marsh Street

Runoff = 0.83 cfs @ 12.10 hrs, Volume= 0.061 af, Depth= 1.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

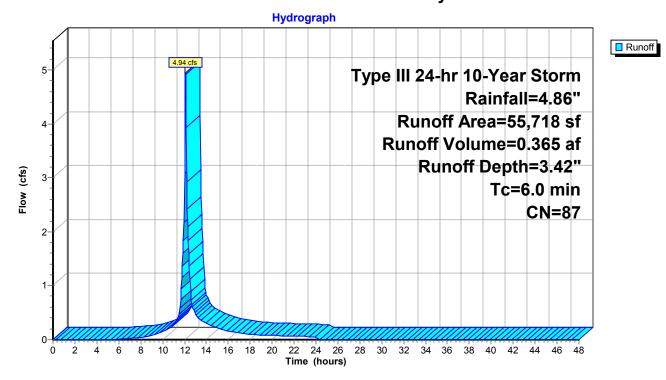
Aı	rea (sf)	CN	Description						
	13,418	61	>75% Grass cover, Good, HSG B						
	3,788	98	Paved roads w/curbs & sewers						
	17,206	69	Weighted Average						
	13,418		Pervious Area						
	3,788		Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	•				
6.0					Direct Entry,				

Subcatchment 1S: Site to Marsh Street

Prepared by Gala Simon Associates

Page 2 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 2S: Roadway

Runoff = 4.94 cfs @ 12.09 hrs, Volume= 0.365 af, Depth= 3.42"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

_	Area ((sf) (CN [Description					
	4,4	121	39 >	75% Gras	s cover, Go	od, HSG A			
	31,4	101	98 F	Paved park	ing & roofs				
_	19,8	396	80 >	75% Gras	s cover, Go	ood, HSG D			
	55,7 24,3 31,4	317	F	Weighted Average Pervious Area Impervious Area					
_		ngth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	6.0					Direct Entry.			

Subcatchment 2S: Roadway

3/1/2017

Subcatchment 3S: Site to Depression

Runoff = 6.54 cfs @ 12.12 hrs, Volume= 0.516 af, Depth= 2.62"

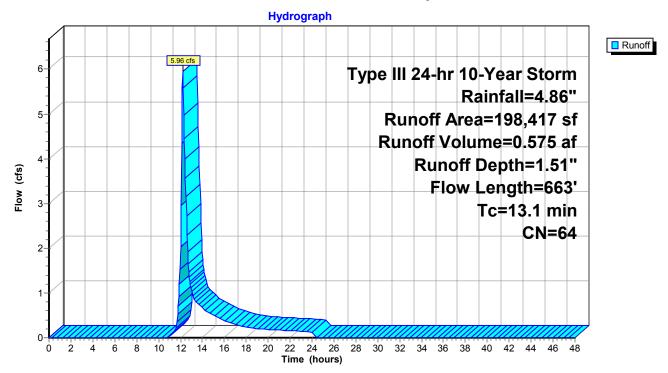
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

A	rea (sf)	CN [Description		
•	1,407	98 F	Paved park	ing & roofs	
	3,263	39 >	75% Gras	s cover, Go	ood, HSG A
	34,972	80 >	75% Gras	s cover, Go	ood, HSG D
	63,162	79 V	Voods, Fai	r, HSG D	
1	02,804	78 V	Veighted A	verage	
1	01,397	F	Pervious Ar	ea	
	1,407	I	mpervious	Area	
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.0	50	0.0300	0.12		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.20"
1.1	175	0.0300	2.60		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
0.5	35	0.0500	1.12		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
8.6	260	Total			

Subcatchment 3S: Site to Depression

Page 4 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 4S: Off Site Properties

Runoff = 5.96 cfs @ 12.20 hrs, Volume= 0.575 af, Depth= 1.51"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

A	rea (sf)	CN D	escription					
	32,278 41,772		, 1,					
	24,367			s, 25% imp				
1	98,417	64 V	Veighted A	verage				
	48,813		ervious Ar					
	49,604	Ir	npervious	Area				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
8.2	50	0.0200	0.10		Sheet Flow,			
4.0	550	0.0000	0.40		Grass: Dense n= 0.240 P2= 3.20"			
4.3	550	0.0200	2.12		Shallow Concentrated Flow,			
0.2	16	0.0100	1.50		Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow,			
0.2	10	0.0100	1.00		Grassed Waterway Kv= 15.0 fps			
0.1	30	0.0100	6.44	11.38	·			
					Diam= 18.0" Area= 1.8 sf Perim= 4.7' r= 0.38'			
					n= 0.012 Concrete pipe, finished			
0.3	17	0.0300	0.87		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
13.1	663	Total						

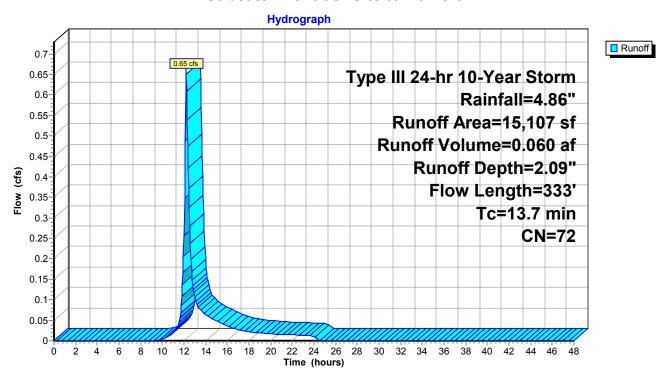
Subcatchment 4S: Off Site Properties

Page 6 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Subcatchment 5S: Site to Culvert

Runoff = 0.65 cfs @ 12.20 hrs, Volume= 0.060 af, Depth= 2.09"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

	Area (sf)	CN [Description					
	546	98 F	98 Paved parking & roofs					
	1,924	79 \	Voods, Fai	r, HSG D				
	3,142	39 >	-75% Gras	s cover, Go	ood, HSG A			
	9,495	80 >	>75% Gras	s cover, Go	ood, HSG D			
	15,107	72 \	Neighted A	verage				
	14,561		Pervious Ar					
	546	I	mpervious	Area				
_		0.1		. "	B			
To	U	Slope	Velocity	Capacity	Description			
(min)	, ,	(ft/ft)	(ft/sec)	(cfs)				
10.8	3 50	0.0100	0.08		Sheet Flow,			
0.6	004	0.0400	4.50		Grass: Dense n= 0.240 P2= 3.20"			
2.6	3 231	0.0100	1.50		Shallow Concentrated Flow,			
0.4	. 20	0.0150	7 20	10.07	Grassed Waterway Kv= 15.0 fps			
0.1	I 38	0.0150	7.28	12.87	Circular Channel (pipe), Diam= 18.0" Area= 1.8 sf Perim= 4.7' r= 0.38'			
					n= 0.013 Corrugated PE, smooth interior			
0.2	2 14	0.0100	1.50		Shallow Concentrated Flow,			
0.2	- 17	5.0100	1.00		Grassed Waterway Kv= 15.0 fps			
13.7	7 333	Total			c.accaa.c.may toto ipo			

Page 7 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Subcatchment 5S: Site to Culvert

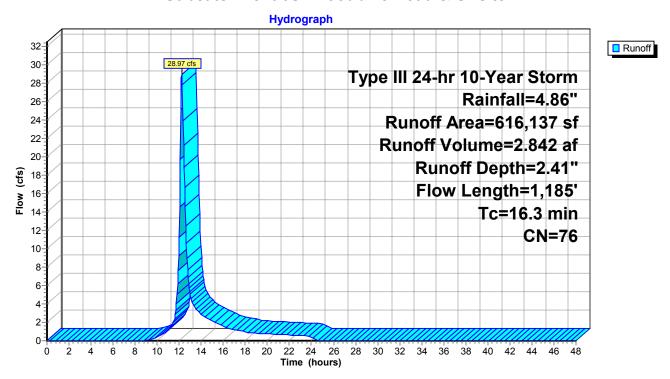
Page 8

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Subcatchment 6S: Woodbine Road & Offsite

Runoff = 28.97 cfs @ 12.23 hrs, Volume= 2.842 af, Depth= 2.41"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

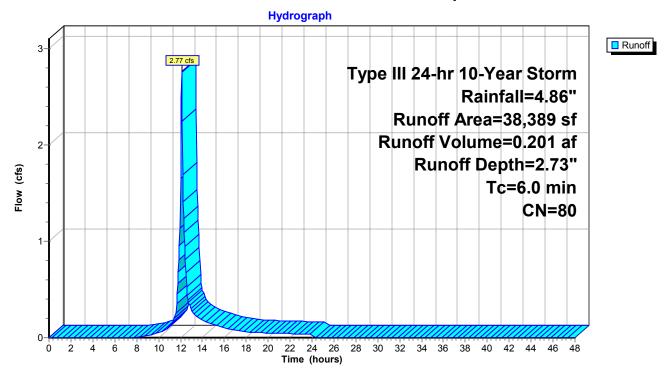
A	rea (sf)	CN D	escription		
3	62,024		√oods, Fai		
2	254,113	80 1	/2 acre lots	s, 25% imp	, HSG C
6	16,137	76 V	Veighted A	verage	
5	52,609		ervious Ar		
	63,528	Ir	npervious	Area	
_		01			D
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.9	50	0.2000	0.17		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
3.4	125	0.0150	0.61		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.8	200	0.0150	1.84		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
3.7	710	0.0250	3.21		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
2.5	100	0.0180	0.67		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
16.3	1,185	Total			

Page 9 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Subcatchment 6S: Woodbine Road & Offsite

3/1/2017


Subcatchment 7S: Site to Woodbine Depression

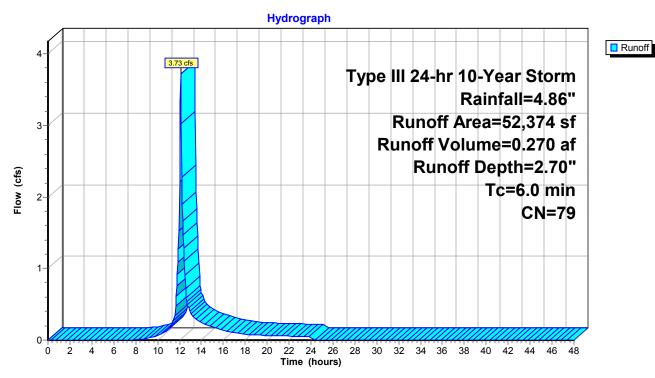
Runoff = 2.77 cfs @ 12.09 hrs, Volume= 0.201 af, Depth= 2.73"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

Ar	ea (sf)	CN	Description							
	546	98	Paved park	ing & roofs						
	25,988	79	Woods, Fai	r, HSG D						
	11,855	80	>75% Gras	s cover, Go	ood, HSG D					
	38,389	80 '	Weighted A	verage						
(37,843		Pervious Ar	rea						
	546		Impervious	Area						
	Length	Slope	•	Capacity	Description					
(min)	(feet)	(ft/ft)) (ft/sec) (cfs)							
6.0					Direct Entry,					

Subcatchment 7S: Site to Woodbine Depression

3/1/2017


Subcatchment 8S: Site to Wetlands

Runoff = 3.73 cfs @ 12.09 hrs, Volume= 0.270 af, Depth= 2.70"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Storm Rainfall=4.86"

rea (sf)	CN	Description					
42,527	79	Woods, Fai	r, HSG D				
9,847	80	>75% Grass	s cover, Go	ood, HSG D			
52,374	79	Weighted Average					
52,374		Pervious Ar	ea				
Length	Slop	e Velocity	Capacity	Description			
(feet)	(ft/ft	(ft/sec)	(cfs)				
				Direct Entry,			
	42,527 9,847 52,374 52,374 Length	42,527 79 9,847 80 52,374 79 52,374 Length Slope	42,527 79 Woods, Fai 9,847 80 >75% Grass 52,374 79 Weighted A 52,374 Pervious Ar Length Slope Velocity	42,527 79 Woods, Fair, HSG D 9,847 80 >75% Grass cover, Gr 52,374 79 Weighted Average Pervious Area Length Slope Velocity Capacity			

Subcatchment 8S: Site to Wetlands

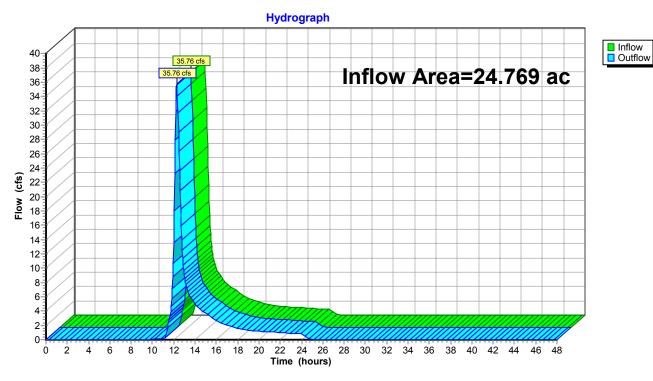
Prepared by Gala Simon Associates

Page 12

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Reach 1R: IVW


Inflow Area = 24.769 ac, Inflow Depth = 2.02" for 10-Year Storm event

Inflow = 35.76 cfs @ 12.29 hrs, Volume= 4.164 af

Outflow = 35.76 cfs @ 12.29 hrs, Volume= 4.164 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach 1R: IVW

Prepared by Gala Simon Associates

Page 13

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 1P: Detention/Infiltration Pond

Inflow Area = 1.279 ac, Inflow Depth = 3.37" for 10-Year Storm event Inflow 4.95 cfs @ 12.09 hrs, Volume= 0.360 af 0.88 cfs @ 12.56 hrs, Volume= Outflow 0.360 af, Atten= 82%, Lag= 28.2 min

0.14 cfs @ 10.10 hrs, Volume= Discarded = 0.255 af Primary = 0.73 cfs @ 12.56 hrs, Volume= 0.105 af

Routing by Stor-Ind method. Time Span= 0.00-48.00 hrs. dt= 0.05 hrs. Peak Elev= 90.33' @ 12.56 hrs Surf.Area= 4,153 sf Storage= 6,824 cf

Plug-Flow detention time= 267.5 min calculated for 0.359 af (100% of inflow)

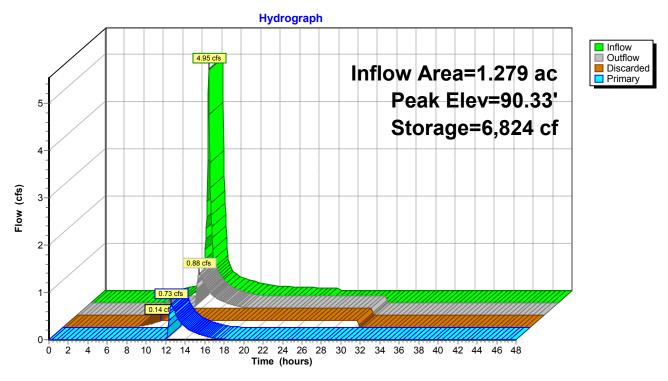
Center-of-Mass det. time= 267.7 min (1,072.6 - 804.9)

Volume	Inve	rt Avai	il.Storage	Storage Descript	ion		
#1	88.50	0'	14,988 cf	Custom Stage D	ata (Irregular) Lis	sted below (Recalc)	1
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
88.5	0	3,498	238.0	0	0	3,498	
89.0	0	3,498	238.0	1,749	1,749	3,617	
90.0	0	3,988	251.0	3,740	5,489	4,179	
91.0	0	4,502	263.0	4,242	9,732	4,733	
92.0	0	6,049	329.0	5,256	14,988	7,856	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	89	.80' 8.0"	Vert. Orifice C=	0.600		
#2	Primary	91	.20' 2.00	' x 2.00' Horiz. Ov	erflow Grate L	imited to weir flow	C= 0.600
#3	Discarde	d 0	0.00' Exfi	Itration			
			Elev	. (feet) 88.50 88	.51 89.00 90.00	91.00 92.00	
			Disc	h. (cfs) 0.000 0.1	43 0.143 0.143	0.143 0.143	

Discarded OutFlow Max=0.14 cfs @ 10.10 hrs HW=88.51' (Free Discharge) **T_3=Exfiltration** (Custom Controls 0.14 cfs)

Primary OutFlow Max=0.73 cfs @ 12.56 hrs HW=90.33' (Free Discharge)

-1=Orifice (Orifice Controls 0.73 cfs @ 2.47 fps)


-2=Overflow Grate (Controls 0.00 cfs)

Prepared by Gala Simon Associates
HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Page 14

3/1/2017

Pond 1P: Detention/Infiltration Pond

Prepared by Gala Simon Associates

Page 15

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 2P: Roadway Culvert

Inflow Area = 4.902 ac, Inflow Depth = 1.55" for 10-Year Storm event

Inflow = 6.61 cfs @ 12.20 hrs, Volume= 0.635 af

Outflow = 6.62 cfs @ 12.20 hrs, Volume= 0.635 af, Atten= 0%, Lag= 0.2 min

Primary = 6.62 cfs @ 12.20 hrs, Volume= 0.635 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 87.72' @ 12.20 hrs Surf.Area= 0 sf Storage= 144 cf

Plug-Flow detention time= 1.0 min calculated for 0.634 af (100% of inflow)

Center-of-Mass det. time= 1.0 min (870.2 - 869.2)

Volume	Inve	rt Avail.Sto	rage S	Storage Description
#1	87.2	5' 4,80	01 cf C	Custom Stage Data Listed below
Elevatio	n C	um.Store		
(fee	t) (cı	ubic-feet)		
87.2	5	0		
88.0	0	230		
89.5	0	4,801		
Device	Routing	Invert	Outlet	Devices

Device	Routing	Invert	Outlet Devices
#1	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500 Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished
#2	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished
#3	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished
#4	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished
#5	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished
#6	Primary	87.25'	18.0" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500 Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished
			• •

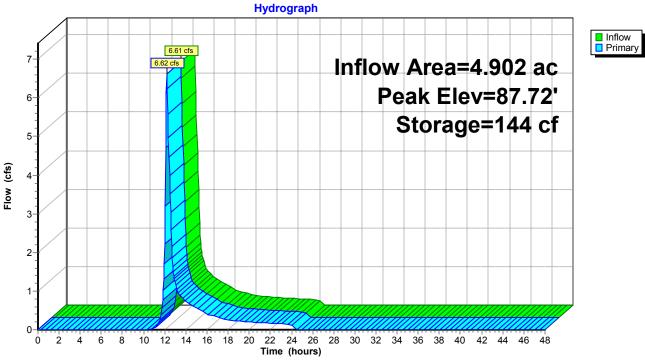
Primary OutFlow Max=6.59 cfs @ 12.20 hrs HW=87.72' (Free Discharge)

-1=Culvert (Inlet Controls 1.10 cfs @ 2.33 fps)

-2=Culvert (Inlet Controls 1.10 cfs @ 2.33 fps)

-3=Culvert (Inlet Controls 1.10 cfs @ 2.33 fps)

-4=Culvert (Inlet Controls 1.10 cfs @ 2.33 fps)


-5=Culvert (Inlet Controls 1.10 cfs @ 2.33 fps)

-6=Culvert (Inlet Controls 1.10 cfs @ 2.33 fps)

Page 16 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 2P: Roadway Culvert

Prepared by Gala Simon Associates

Page 17

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 3P: Site Depression

Inflow Area = 8.541 ac, Inflow Depth = 1.76" for 10-Year Storm event

Inflow = 12.51 cfs @ 12.16 hrs, Volume= 1.255 af

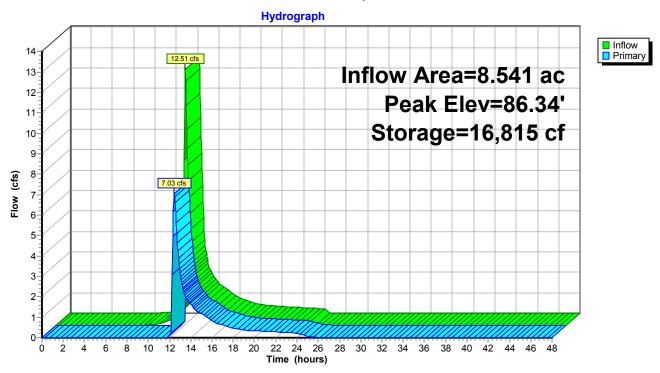
Outflow = 7.03 cfs @ 12.46 hrs, Volume= 0.985 af, Atten= 44%, Lag= 17.7 min

Primary = 7.03 cfs @ 12.46 hrs, Volume= 0.985 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 86.34' @ 12.46 hrs Surf.Area= 54,595 sf Storage= 16,815 cf

Plug-Flow detention time= 140.3 min calculated for 0.985 af (78% of inflow)

Center-of-Mass det. time= 59.2 min (908.7 - 849.5)


Volume	Inve	rt Ava	il.Storage	Storage Descripti	on		
#1	86.0	0'	58,179 cf	Custom Stage D	ata (Irregular) List	ed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
86.0 86.2 87.0	25	41,988 52,276 72,037	830.0 995.0 1,166.0	0 11,760 46,420	0 11,760 58,179	41,988 65,952 95,369	
Device	Routing	,	,	et Devices	56,179	95,369	
#1	Primary		6.25' 90.0 Hea	d' long x 30.0' bread (feet) 0.20 0.40	0.60 0.80 1.00	ed Rectangular Weir 1.20 1.40 1.60 63 2.64 2.64 2.63	,

Primary OutFlow Max=7.00 cfs @ 12.46 hrs HW=86.34' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 7.00 cfs @ 0.82 fps)

Page 18 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 3P: Site Depression

Prepared by Gala Simon Associates

Page 19

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 4P: Woodbine Depression

Inflow Area = 15.026 ac, Inflow Depth = 2.43" for 10-Year Storm event

Inflow = 30.59 cfs @ 12.22 hrs, Volume= 3.043 af

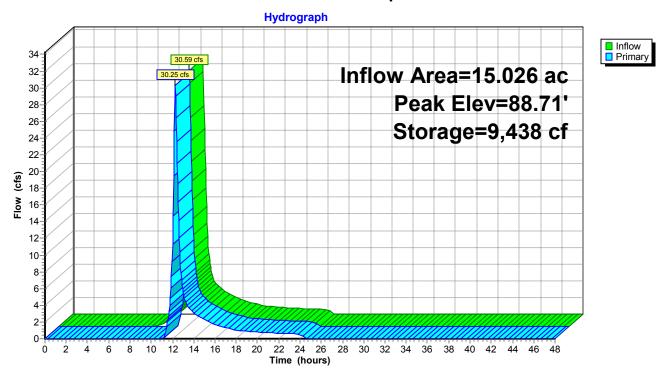
Outflow = 30.25 cfs @ 12.25 hrs, Volume= 2.908 af, Atten= 1%, Lag= 1.7 min

Primary = 30.25 cfs @ 12.25 hrs, Volume= 2.908 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 88.71' @ 12.25 hrs Surf.Area= 18,851 sf Storage= 9,438 cf

Plug-Flow detention time= 37.2 min calculated for 2.905 af (95% of inflow) Center-of-Mass det. time= 13.0 min (855.2 - 842.2)

Volume	Inv	vert Ava	il.Storage	Storage Descripti	on		
#1	88.	00'	15,673 cf	Custom Stage D	ata (Irregular) List	ted below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
88.0	00	8,161	367.0	0	0	8,161	
88.5	50	15,722	518.0	5,868	5,868	18,798	
89.0	00	23,774	614.0	9,805	15,673	27,450	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	88	3.50' 120 .	0' long x 97.0' bro	eadth Broad-Cres	ted Rectangular Weir	


Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=30.21 cfs @ 12.25 hrs HW=88.71' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 30.21 cfs @ 1.22 fps)

Page 20

3/1/2017

Pond 4P: Woodbine Depression

Prepared by Gala Simon Associates

Page 21 3/1/2017

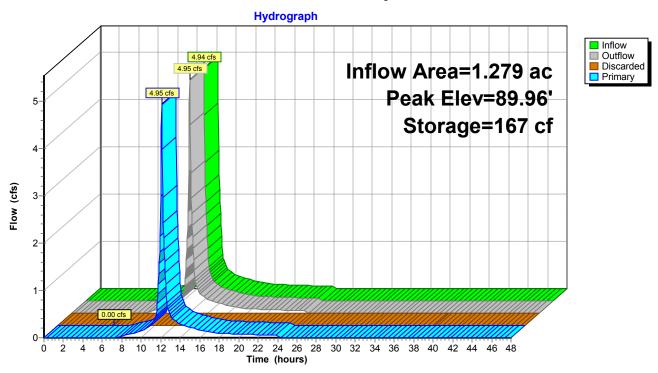
HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 7L: Infiltration System 7

Inflow Area = 1.279 ac, Inflow Depth = 3.42" for 10-Year Storm event
Inflow = 4.94 cfs @ 12.09 hrs, Volume= 0.365 af
Outflow = 4.95 cfs @ 12.09 hrs, Volume= 0.365 af, Atten= 0%, Lag= 0.2 min
Discarded = 0.00 cfs @ 5.75 hrs, Volume= 0.005 af
Primary = 4.95 cfs @ 12.09 hrs, Volume= 0.360 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 89.96' @ 12.09 hrs Surf.Area= 0 sf Storage= 167 cf

Plug-Flow detention time= 10.2 min calculated for 0.365 af (100% of inflow) Center-of-Mass det. time= 10.1 min (812.8 - 802.6)


Volume	Invert	Avail.Storage	Storage Description
#1	86.50'	247 cf	Custom Stage Data Listed below
Elevation (feet)	Cum. (cubic-		
86.50		0	
87.00		13	
91.50		247	

Device	Routing	Invert	Outlet Devices
#1	Discarded	0.00'	Exfiltration
			Elev. (feet) 86.50 86.51 87.00 91.50
			Disch. (cfs) 0.000 0.002 0.002 0.002
#2	Primary	88.74'	18.0" x 45.0' long Outlet CPP, square edge headwall, Ke= 0.500
			Outlet Invert= 88.50' S= 0.0053 '/' Cc= 0.900
			n= 0.009 Corrugated PE, smooth interior

Discarded OutFlow Max=0.00 cfs @ 5.75 hrs HW=86.51' (Free Discharge) **1=Exfiltration** (Custom Controls 0.00 cfs)

Primary OutFlow Max=4.86 cfs @ 12.09 hrs HW=89.95' (Free Discharge) **2=Outlet** (Barrel Controls 4.86 cfs @ 4.35 fps)

Pond 7L: Infiltration System 7

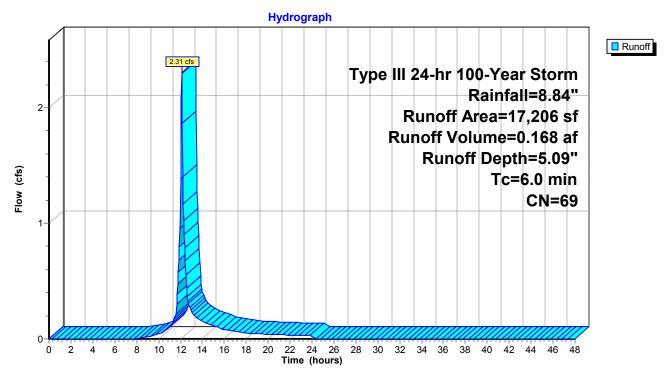
Proposed Conditions 100 Year Storm Event

Prepared by Gala Simon Associates

Page 1

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 1S: Site to Marsh Street

Runoff = 2.31 cfs @ 12.09 hrs, Volume= 0.168 af, Depth= 5.09"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

Are	ea (sf)	CN	Description						
1	13,418	61	>75% Gras	s cover, Go	ood, HSG B				
	3,788	98	Paved road	s w/curbs 8	& sewers				
1	17,206	69	Weighted Average						
1	13,418		Pervious Area						
	3,788		Impervious	Area					
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	•				
6.0					Direct Entry,				

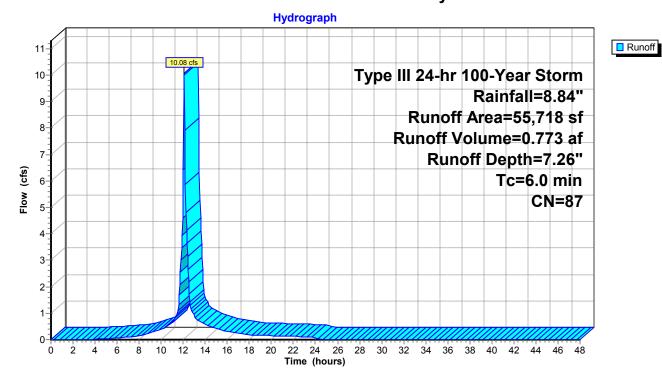
Subcatchment 1S: Site to Marsh Street

Prepared by Gala Simon Associates

Page 2

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017


Subcatchment 2S: Roadway

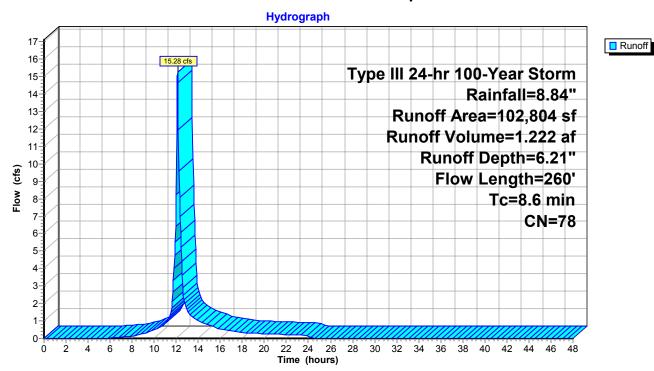
Runoff = 10.08 cfs @ 12.09 hrs, Volume= 0.773 af, Depth= 7.26"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

Ar	rea (sf)	CN	Description						
	4,421	39	>75% Gras	s cover, Go	ood, HSG A				
	31,401	98	Paved park	ing & roofs	3				
	19,896	80	>75% Gras	s cover, Go	ood, HSG D				
	55,718	87	Weighted Average						
	24,317		Pervious Area						
	31,401		Impervious	Area					
Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	•				
6.0	(1001)	(1010	(1200)	(0.0)	Direct Entry,				

Subcatchment 2S: Roadway

3/1/2017


Subcatchment 3S: Site to Depression

Runoff = 15.28 cfs @ 12.12 hrs, Volume= 1.222 af, Depth= 6.21"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

	Area (sf)	CN [Description							
	1,407	98 F	Paved parking & roofs							
	3,263	39 >	-75% Ġras	s cover, Go	ood, HSG A					
	34,972	80 >	75% Gras	s cover, Go	ood, HSG D					
	63,162	79 V	Voods, Fai	r, HSG D						
	102,804	78 V	Veighted A	verage						
	101,397	F	Pervious Ar	rea						
	1,407	I	mpervious	Area						
Tc	- 3	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
7.0	50	0.0300	0.12		Sheet Flow,					
					Grass: Dense n= 0.240 P2= 3.20"					
1.1	175	0.0300	2.60		Shallow Concentrated Flow,					
					Grassed Waterway Kv= 15.0 fps					
0.5	35	0.0500	1.12		Shallow Concentrated Flow,					
					Woodland Kv= 5.0 fps					
8.6	260	Total								

Subcatchment 3S: Site to Depression

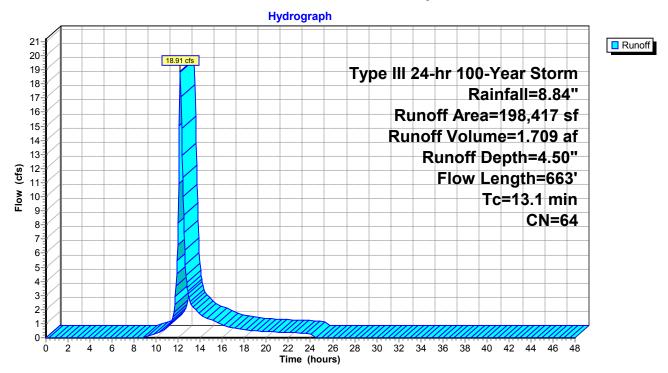
Prepared by Gala Simon Associates

Page 4 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Subcatchment 4S: Off Site Properties

Runoff = 18.91 cfs @ 12.19 hrs, Volume= 1.709 af, Depth= 4.50"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

	rea (sf)	CN D	escription		
•	132,278 41,772			s, 25% imp, s, 25% imp,	
	24,367			s, 25% imp, s, 25% imp,	
	198,417	64 W	/eighted A	verage	
•	148,813		ervious Ar		
	49,604	In	npervious	Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
8.2	50	0.0200	0.10		Sheet Flow,
4.0	550	0.0000	0.40		Grass: Dense n= 0.240 P2= 3.20"
4.3	550	0.0200	2.12		Shallow Concentrated Flow,
0.2	16	0.0100	1.50		Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow,
0.2	10	0.0100	1.50		Grassed Waterway Kv= 15.0 fps
0.1	30	0.0100	6.44	11.38	Circular Channel (pipe), Culvert
					Diam= 18.0" Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.012 Concrete pipe, finished
0.3	17	0.0300	0.87		Shallow Concentrated Flow,
40.4	000	T - 4 - 1			Woodland Kv= 5.0 fps
13.1	663	Total			

Page 5 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Subcatchment 4S: Off Site Properties

Prepared by Gala Simon Associates

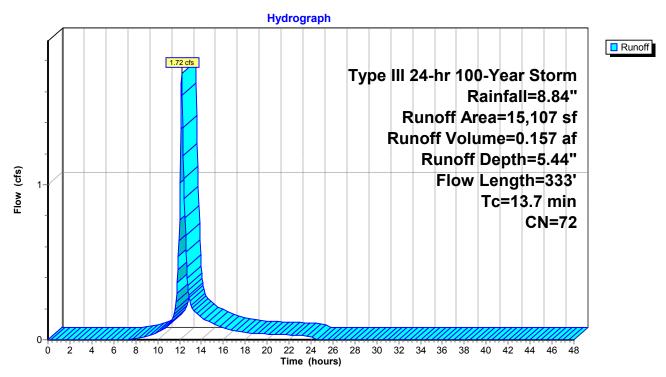
Page 6

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Subcatchment 5S: Site to Culvert

Runoff = 1.72 cfs @ 12.19 hrs, Volume= 0.157 af, Depth= 5.44"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

A	rea (sf)	CN E	Description						
	546	98 F	98 Paved parking & roofs						
	1,924	79 V	Voods, Fai	r, HSG D					
	3,142	39 >	·75% Gras	s cover, Go	ood, HSG A				
	9,495	80 >	·75% Gras	s cover, Go	ood, HSG D				
	15,107	72 V	Veighted A	verage					
	14,561	F	Pervious Ar	ea					
	546	lı lı	mpervious	Area					
_		٥.							
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
10.8	50	0.0100	0.08		Sheet Flow,				
					Grass: Dense n= 0.240 P2= 3.20"				
2.6	231	0.0100	1.50		Shallow Concentrated Flow,				
0.4	00	0.0450	7.00	40.07	Grassed Waterway Kv= 15.0 fps				
0.1	38	0.0150	7.28	12.87	Circular Channel (pipe),				
					Diam= 18.0" Area= 1.8 sf Perim= 4.7' r= 0.38'				
0.2	1.1	0.0100	1 50		n= 0.013 Corrugated PE, smooth interior				
0.2	14	0.0100	1.50		Shallow Concentrated Flow,				
40.7	222	Tatal			Grassed Waterway Kv= 15.0 fps				
13.7	333	Total							

Page 7

3/1/2017

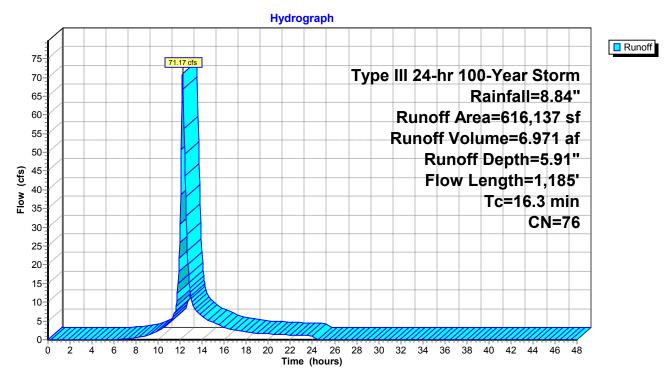
Subcatchment 5S: Site to Culvert

Prepared by Gala Simon Associates

Page 8

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

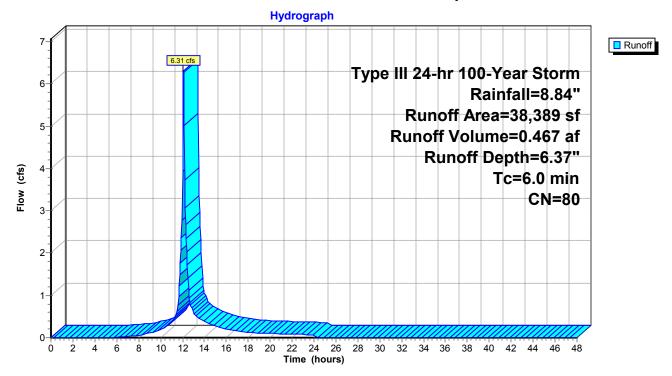

Subcatchment 6S: Woodbine Road & Offsite

Runoff = 71.17 cfs @ 12.22 hrs, Volume= 6.971 af, Depth= 5.91"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

A	rea (sf)	CN D	escription		
	62,024		/oods, Fai		
2	54,113	80 1	/2 acre lots	s, 25% imp	, HSG C
6	16,137	76 W	eighted A	verage	
5	52,609	Р	ervious Ar	ea	
	63,528	In	npervious	Area	
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.9	50	0.2000	0.17		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
3.4	125	0.0150	0.61		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.8	200	0.0150	1.84		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
3.7	710	0.0250	3.21		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
2.5	100	0.0180	0.67		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
16.3	1,185	Total			

Subcatchment 6S: Woodbine Road & Offsite


Subcatchment 7S: Site to Woodbine Depression

Runoff = 6.31 cfs @ 12.09 hrs, Volume= 0.467 af, Depth= 6.37"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

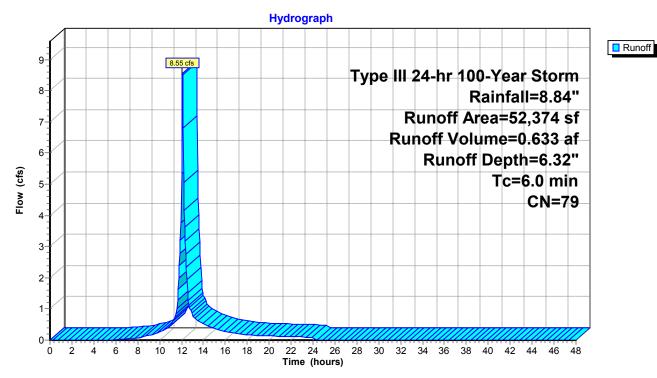
A	rea (sf)	CN	Description						
	546	98	Paved park	ing & roofs	S				
	25,988	79	Woods, Fai	r, HSG D					
	11,855	80	>75% Gras	s cover, Go	Good, HSG D				
	38,389	80	Weighted Average						
	37,843		Pervious Area						
	546		Impervious	Area					
т.		Olana.	\/a a=!f	0	Description				
Tc	Length	Slope	•	Capacity	·				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				

Subcatchment 7S: Site to Woodbine Depression

Prepared by Gala Simon Associates

Page 11 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 8S: Site to Wetlands

Runoff = 8.55 cfs @ 12.09 hrs, Volume= 0.633 af, Depth= 6.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

	Α	rea (sf)	CN	Description						
		42,527	79	Woods, Fair, HSG D						
_		9,847	80	>75% Grass cover, Good, HSG D						
_		52,374	79	Weighted Average						
		52,374		Pervious Ar	ea					
	Tc	Length	Slope	,	Capacity	·				
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	6.0					Direct Entry				

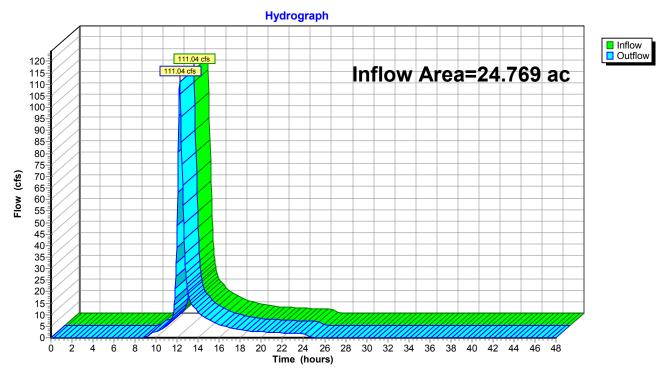
Subcatchment 8S: Site to Wetlands

Prepared by Gala Simon Associates
HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Page 12

3/1/2017

Reach 1R: IVW


Inflow Area = 24.769 ac, Inflow Depth = 5.43" for 100-Year Storm event

Inflow = 111.04 cfs @ 12.24 hrs, Volume= 11.209 af

Outflow = 111.04 cfs @ 12.24 hrs, Volume= 11.209 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs

Reach 1R: IVW

Prepared by Gala Simon Associates

Page 13

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 1P: Detention/Infiltration Pond

Inflow Area = 1.279 ac, Inflow Depth = 7.20" for 100-Year Storm event Inflow = 10.14 cfs @ 12.09 hrs, Volume= 0.768 af

Outflow = 5.34 cfs @ 12.23 hrs, Volume= 0.768 af, Atten= 47%, Lag= 8.4 min

Discarded = 0.14 cfs 0 7.95 hrs, Volume= 0.314 afPrimary = 5.19 cfs 0 12.23 hrs, Volume= 0.454 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 91.45' @ 12.23 hrs Surf.Area= 5,169 sf Storage= 11,905 cf

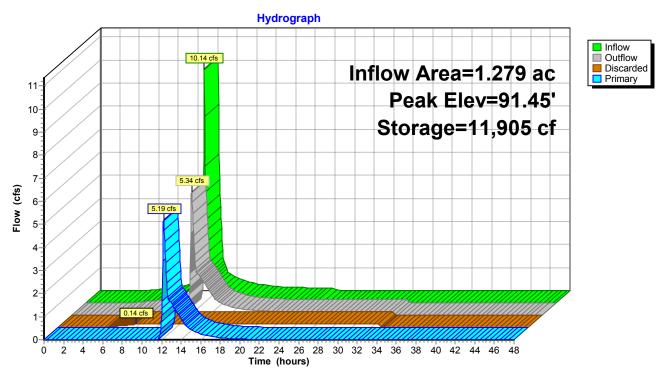
Plug-Flow detention time= 178.6 min calculated for 0.768 af (100% of inflow)

Center-of-Mass det. time= 178.6 min (962.5 - 783.9)

Volume	Inve	rt Avai	I.Storage	Storage Descript	ion		
#1	88.50)'	14,988 cf	Custom Stage D	ata (Irregular) L	isted below (Recalc)
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Stor (cubic-feet		
88.5	50	3,498	238.0	0		0 3,498	
89.0	00	3,498	238.0	1,749	1,74	9 3,617	
90.0	00	3,988	251.0	3,740	5,48	9 4,179	
91.0	00	4,502	263.0	4,242	9,73	2 4,733	
92.0	00	6,049	329.0	5,256	14,98	8 7,856	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	89	.80' 8.0"	Vert. Orifice C=	0.600		
#2	Primary	91	.20' 2.00	' x 2.00' Horiz. Ov	erflow Grate	Limited to weir flow	C = 0.600
#3	Discarded	0 t	.00' Exfi	Itration			
				v. (feet) 88.50 88 ch. (cfs) 0.000 0.1			

Discarded OutFlow Max=0.14 cfs @ 7.95 hrs HW=88.51' (Free Discharge) **3=Exfiltration** (Custom Controls 0.14 cfs)

Primary OutFlow Max=5.14 cfs @ 12.23 hrs HW=91.45' (Free Discharge)


1=Orifice (Orifice Controls 1.93 cfs @ 5.52 fps)

-2=Overflow Grate (Weir Controls 3.21 cfs @ 1.62 fps)

Page 14 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 1P: Detention/Infiltration Pond

Prepared by Gala Simon Associates

Page 15

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 2P: Roadway Culvert

Inflow Area = 4.902 ac, Inflow Depth = 4.57" for 100-Year Storm event

Inflow 20.63 cfs @ 12.19 hrs. Volume= 1.866 af

Outflow 20.46 cfs @ 12.21 hrs, Volume= 1.866 af, Atten= 1%, Lag= 1.4 min

Primary 20.46 cfs @ 12.21 hrs, Volume= 1.866 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 88.13' @ 12.21 hrs Surf.Area= 0 sf Storage= 612 cf

Plug-Flow detention time= 0.7 min calculated for 1.864 af (100% of inflow)

Center-of-Mass det. time= 0.7 min (838.0 - 837.3)

Volume	Inve	ert Avail.Sto	rage	Storage Description
#1	87.2	5' 4,80	01 cf	Custom Stage Data Listed below
Elevation	on C	cum.Store		
(fee	et) (c	ubic-feet)		
87.2	25	0		
88.0	00	230		
89.5	50	4,801		
Device	Routing	Invert	Outle	et Devices
#1	Primary	87.25'	18.0	" x 37.5' long Culvert RCP, square edge headwall, Ke= 0.500
	- ,			et Invert= 86.69' S= 0.0149 '/' Cc= 0.900
			n= 0	.012 Concrete pipe, finished
""	ъ.	07.051	400	

#2 Primary **18.0" x 37.5' long Culvert** RCP, square edge headwall, Ke= 0.500 87.25' Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished #3 Primary 87.25' **18.0"** x **37.5'** long Culvert RCP, square edge headwall, Ke= 0.500 Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished #4 Primary 87.25' **18.0" x 37.5' long Culvert** RCP, square edge headwall, Ke= 0.500 Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished **18.0"** x **37.5'** long Culvert RCP, square edge headwall, Ke= 0.500 #5 Primary 87.25' Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished #6 **18.0"** x **37.5' long Culvert** RCP, square edge headwall, Ke= 0.500

Outlet Invert= 86.69' S= 0.0149 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished

Primary OutFlow Max=20.22 cfs @ 12.21 hrs HW=88.12' (Free Discharge)

-1=Culvert (Inlet Controls 3.37 cfs @ 3.17 fps)

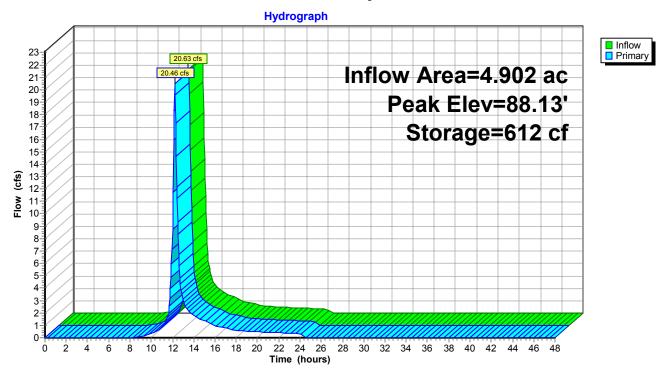
87.25'

Primary

-2=Culvert (Inlet Controls 3.37 cfs @ 3.17 fps)

-3=Culvert (Inlet Controls 3.37 cfs @ 3.17 fps)

-4=Culvert (Inlet Controls 3.37 cfs @ 3.17 fps)


-5=Culvert (Inlet Controls 3.37 cfs @ 3.17 fps)

-6=Culvert (Inlet Controls 3.37 cfs @ 3.17 fps)

Page 16 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 2P: Roadway Culvert

Proposed Conditions5

Prepared by Gala Simon Associates

Page 17

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 3P: Site Depression

Inflow Area = 8.541 ac, Inflow Depth = 4.98" for 100-Year Storm event

Inflow = 37.54 cfs @ 12.19 hrs, Volume= 3.542 af

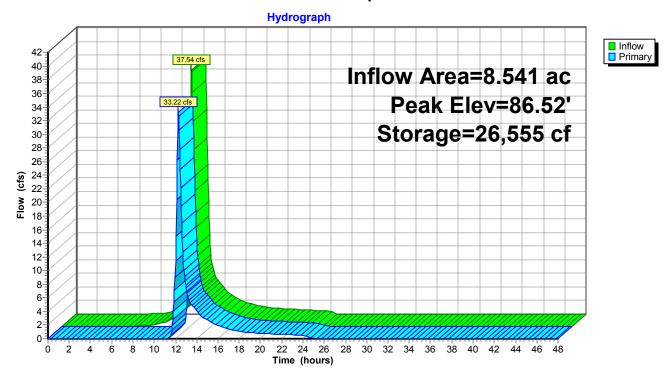
Outflow = 33.22 cfs @ 12.27 hrs, Volume= 3.272 af, Atten= 12%, Lag= 4.8 min

Primary = 33.22 cfs @ 12.27 hrs, Volume= 3.272 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 86.52' @ 12.27 hrs Surf.Area= 58,929 sf Storage= 26,555 cf

Plug-Flow detention time= 68.5 min calculated for 3.272 af (92% of inflow)

Center-of-Mass det. time= 29.9 min (853.2 - 823.3)


Volume	Invert	t Ava	il.Storage	Storage Description					
#1	86.00	1	58,179 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)			
Elevatio (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
86.0	0	41,988	830.0	0	0	41,988			
86.2	5	52,276	995.0	11,760	11,760	65,952			
87.0	0	72,037	1,166.0	46,420	58,179	95,369			
Device	Routing	In	vert Outle	et Devices					
#1	Primary	86	86.25' 90.0' long x 30.0' breadth Broad-Crested Rectangular Wei Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63						

Primary OutFlow Max=32.92 cfs @ 12.27 hrs HW=86.51' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 32.92 cfs @ 1.38 fps)

Page 18

3/1/2017

Pond 3P: Site Depression

Proposed Conditions5

Prepared by Gala Simon Associates

Page 19

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 4P: Woodbine Depression

Inflow Area = 15.026 ac, Inflow Depth = 5.94" for 100-Year Storm event

Inflow = 74.57 cfs @ 12.22 hrs, Volume= 7.438 af

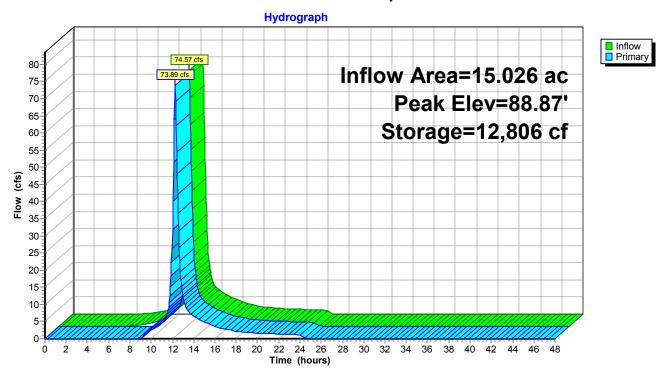
Outflow = 73.89 cfs @ 12.24 hrs, Volume= 7.304 af, Atten= 1%, Lag= 1.4 min

Primary = 73.89 cfs @ 12.24 hrs, Volume= 7.304 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 88.87' @ 12.24 hrs Surf.Area= 21,580 sf Storage= 12,806 cf

Plug-Flow detention time= 19.6 min calculated for 7.304 af (98% of inflow)

Center-of-Mass det. time= 8.6 min (825.3 - 816.7)


Volume	Inv	∕ert Avai	I.Storage	Storage Description	on		
#1	88.	00'	15,673 cf	Custom Stage Da	a ta (Irregular) List	ed below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
88.6 88.5 89.0	50	8,161 15,722 23,774	367.0 518.0 614.0	0 5,868 9,805	0 5,868 15,673	8,161 18,798 27,450	
Device	Routing	In	vert Outle	et Devices			
#1	Primary						

Primary OutFlow Max=73.35 cfs @ 12.24 hrs HW=88.87' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 73.35 cfs @ 1.64 fps)

Page 20 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 4P: Woodbine Depression

Proposed Conditions5

Prepared by Gala Simon Associates

Page 21

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 7L: Infiltration System 7

Inflow Area = 1.279 ac, Inflow Depth = 7.26" for 100-Year Storm event

Inflow = 10.08 cfs @ 12.09 hrs, Volume= 0.773 af

Outflow = 10.14 cfs @ 12.09 hrs, Volume= 0.773 af, Atten= 0%, Lag= 0.2 min

Discarded = 0.00 cfs @ 3.55 hrs, Volume= 0.006 af Primary = 10.14 cfs @ 12.09 hrs, Volume= 0.768 af

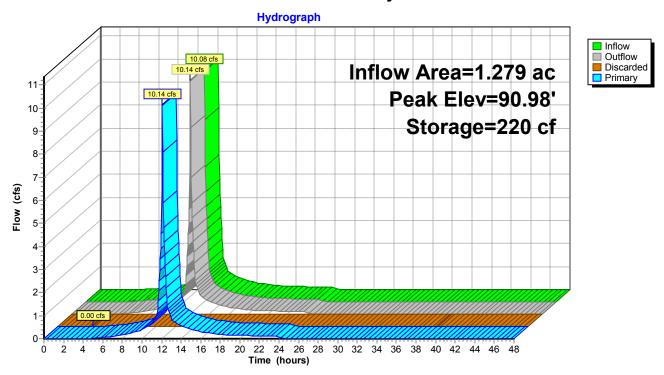
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 90.98' @ 12.09 hrs Surf.Area= 0 sf Storage= 220 cf

Plug-Flow detention time= 4.7 min calculated for 0.773 af (100% of inflow)

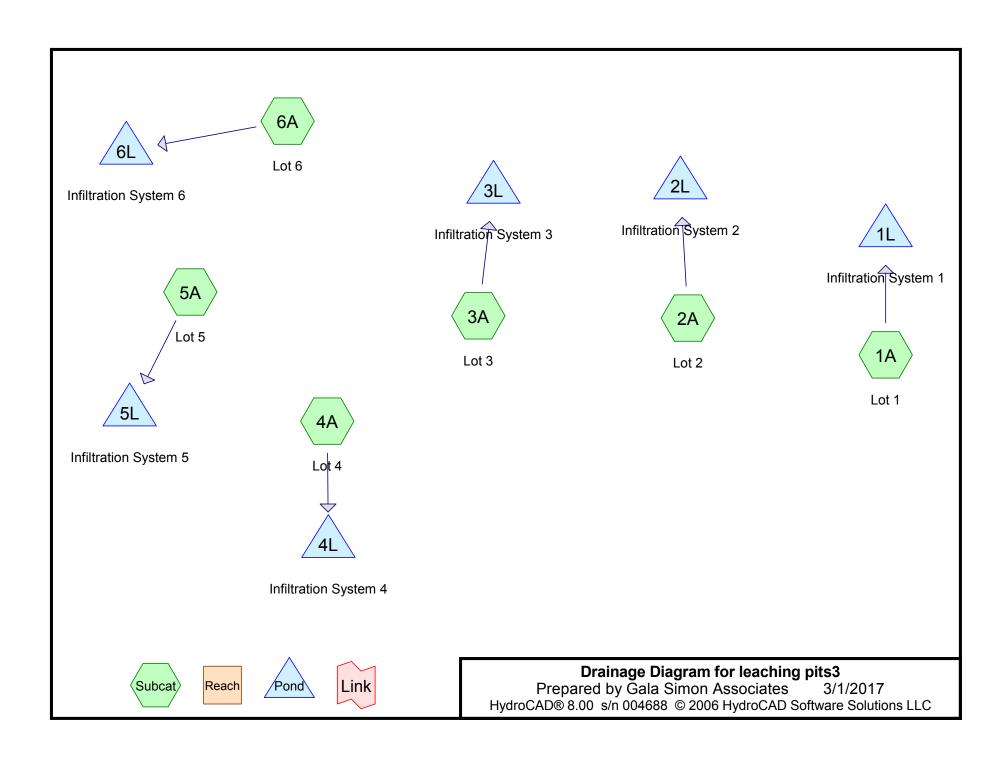
Center-of-Mass det. time= 5.4 min (787.6 - 782.1)

Volume	Invert	Avail.Storage	Storage Description
#1	86.50'	247 cf	Custom Stage Data Listed below
Elevation (feet)	Cum. (cubic		
86.50 87.00 91.50		0 13 247	

Device	Routing	Invert	Outlet Devices
#1	Discarded	0.00'	Exfiltration
			Elev. (feet) 86.50 86.51 87.00 91.50
			Disch. (cfs) 0.000 0.002 0.002 0.002
#2	Primary	88.74'	18.0" x 45.0' long Outlet CPP, square edge headwall, Ke= 0.500
	•		Outlet Invert= 88.50' S= 0.0053 '/' Cc= 0.900 n= 0.009 Corrugated PE, smooth interior


Discarded OutFlow Max=0.00 cfs @ 3.55 hrs HW=86.51' (Free Discharge) **1=Exfiltration** (Custom Controls 0.00 cfs)

Primary OutFlow Max=9.94 cfs @ 12.09 hrs HW=90.93' (Free Discharge) **2=Outlet** (Barrel Controls 9.94 cfs @ 5.63 fps)


Page 22

3/1/2017

Pond 7L: Infiltration System 7

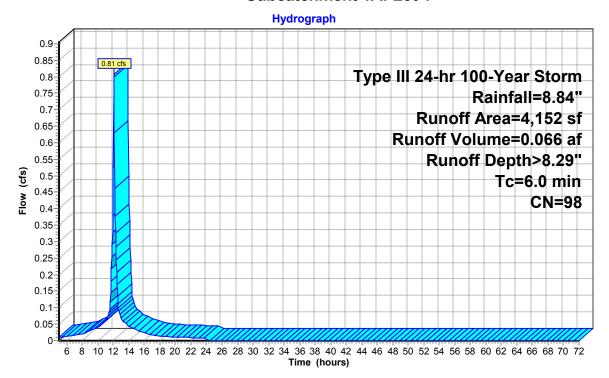
Appendix C Infiltration Systems

Prepared by Gala Simon Associates

Page 1 3/1/2017

Runoff

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 1A: Lot 1

Runoff = 0.81 cfs @ 12.09 hrs, Volume= 0.066 af, Depth> 8.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

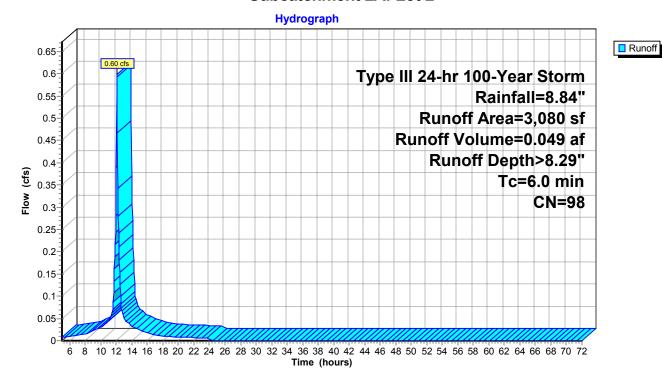
	Area (sf)	CN [Description						
	4,152	98 F	Paved roads w/curbs & sewers						
	4,152	I	Impervious Area						
T (min		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.	0				Direct Entry,				

Subcatchment 1A: Lot 1

Prepared by Gala Simon Associates

Page 2 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 2A: Lot 2

Runoff = 0.60 cfs @ 12.09 hrs, Volume= 0.049 af, Depth> 8.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

	rea (sf)	CN [N Description						
	3,080	98 F	8 Paved roads w/curbs & sewers						
	3,080	Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				

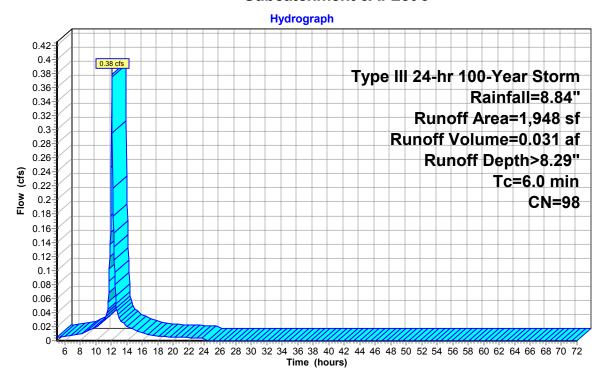
Subcatchment 2A: Lot 2

Prepared by Gala Simon Associates

Page 3 3/1/2017

Runoff

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 3A: Lot 3

Runoff = 0.38 cfs @ 12.09 hrs, Volume= 0.031 af, Depth> 8.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

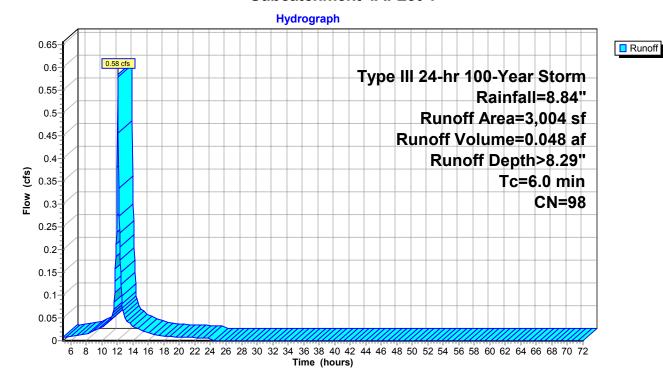
_	Α	rea (sf)	CN [Description							
		1,948	98 F	Paved roads w/curbs & sewers							
		1,948	I	Impervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	6.0					Direct Entry,					

Subcatchment 3A: Lot 3

Prepared by Gala Simon Associates

Page 4 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 4A: Lot 4

Runoff = 0.58 cfs @ 12.09 hrs, Volume= 0.048 af, Depth> 8.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

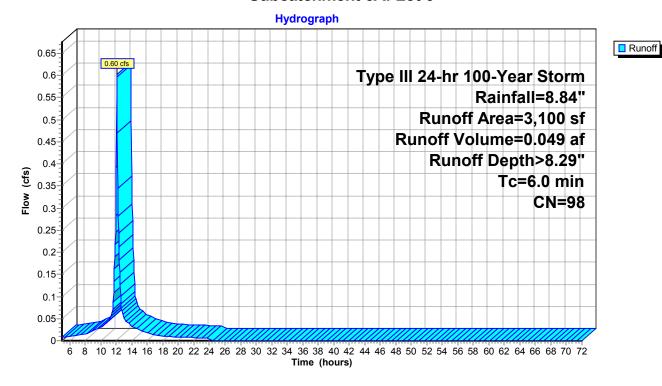
	rea (sf)	CN E	CN Description							
	3,004	98 F	Paved roads w/curbs & sewers							
•	3,004	lı	mpervious	Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0	(1001)	(1010)	(1000)	(0.0)	Direct Entry,					

Subcatchment 4A: Lot 4

Prepared by Gala Simon Associates

Page 5 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 5A: Lot 5

Runoff = 0.60 cfs @ 12.09 hrs, Volume= 0.049 af, Depth> 8.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

A	rea (sf)	CN E	CN Description							
	3,100	98 F	98 Paved roads w/curbs & sewers							
	3,100	lı	mpervious	Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

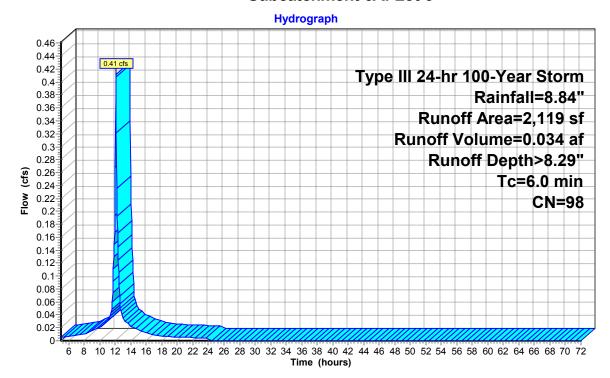
Subcatchment 5A: Lot 5

Prepared by Gala Simon Associates

Page 6 3/1/2017

Runoff

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC


Subcatchment 6A: Lot 6

Runoff = 0.41 cfs @ 12.09 hrs, Volume= 0.034 af, Depth> 8.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Storm Rainfall=8.84"

	Α	rea (sf)	CN I	CN Description							
		2,119	98 I	98 Paved roads w/curbs & sewers							
		2,119	I	Impervious Area							
(Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	6.0					Direct Entry,					

Subcatchment 6A: Lot 6

Prepared by Gala Simon Associates

Page 7

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 1L: Infiltration System 1

Inflow Area = 0.095 ac, Inflow Depth > 8.29" for 100-Year Storm event

Inflow = 0.81 cfs @ 12.09 hrs, Volume= 0.066 af

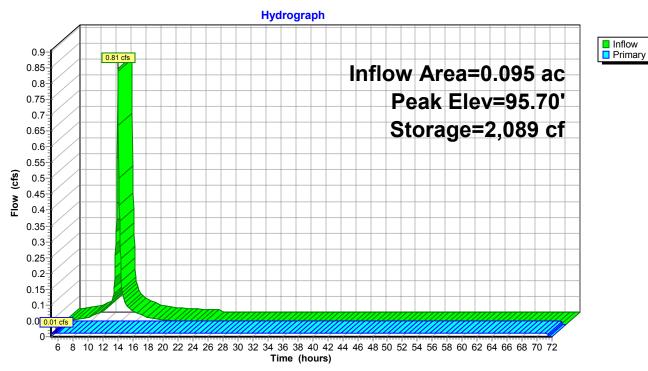
Outflow = 0.01 cfs @ 5.70 hrs, Volume= 0.066 af, Atten= 99%, Lag= 0.0 min

Primary = 0.01 cfs @ 5.70 hrs, Volume= 0.066 af

Routing by Stor-Ind method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 95.70' @ 19.34 hrs Surf.Area= 0 sf Storage= 2,089 cf

Plug-Flow detention time= 1,534.9 min calculated for 0.066 af (100% of inflow)

Center-of-Mass det. time= 1,535.3 min (2,295.3 - 760.0)


Volume	Inv	vert Ava	il.Storage	Storage Description
#1	89	.80'	2,159 cf	Custom Stage Data Listed below
Elevation (fee	_	Cum.Store (cubic-feet)		
89.8	30	0		
90.3	30	84		
95.6	33	2,062		
95.8	39	2,159		
Device	Routing	ı Ir	vert Out	let Devices
#1	Primary	, (0.00' Spe	ecial & User-Defined

Elev. (feet) 89.80 89.81 90.30 95.63 95.89 Disch. (cfs) 0.000 0.012 0.012 0.012 0.012

Primary OutFlow Max=0.01 cfs @ 5.70 hrs HW=89.81' (Free Discharge) 1=Special & User-Defined (Custom Controls 0.01 cfs)

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 1L: Infiltration System 1

Prepared by Gala Simon Associates

Page 9

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 2L: Infiltration System 2

Inflow Area = 0.071 ac, Inflow Depth > 8.29" for 100-Year Storm event

Inflow = 0.60 cfs @ 12.09 hrs, Volume= 0.049 af

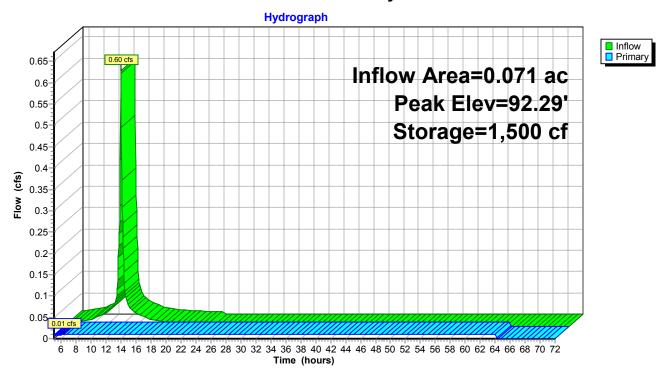
Outflow = 0.01 cfs @ 6.35 hrs, Volume= 0.049 af, Atten= 98%, Lag= 0.0 min

Primary = 0.01 cfs @ 6.35 hrs, Volume= 0.049 af

Routing by Stor-Ind method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 92.29' @ 18.18 hrs Surf.Area= 0 sf Storage= 1,500 cf

Plug-Flow detention time= 1,323.6 min calculated for 0.049 af (100% of inflow)

Center-of-Mass det. time= 1,323.1 min (2,083.1 - 760.0)


Volume	Inve	rt Avail.Sto	age Storage Desc	scription
#1	86.50)' 1,58	1 cf Custom Stag	ge Data Listed below
Elevation (fee	_	um.Store ubic-feet)		
86.5	50	0		
87.0	00	68		
92.3	33	1,511		
92.5	59	1,581		
Device	Routing	Invert	Outlet Devices	
#1	Primary	0.00'	Special & User-De	efined
	•		Elev. (feet) 86.50	0 86.51 87.00 92.33 92.59
			Disch. (cfs) 0.000	0.010 0.010 0.010 0.010

Primary OutFlow Max=0.01 cfs @ 6.35 hrs HW=86.51' (Free Discharge)

1=Special & User-Defined (Custom Controls 0.01 cfs)

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 2L: Infiltration System 2

Prepared by Gala Simon Associates

Page 11

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 3L: Infiltration System 3

Inflow Area = 0.045 ac, Inflow Depth > 8.29" for 100-Year Storm event

Inflow = 0.38 cfs @ 12.09 hrs, Volume= 0.031 af

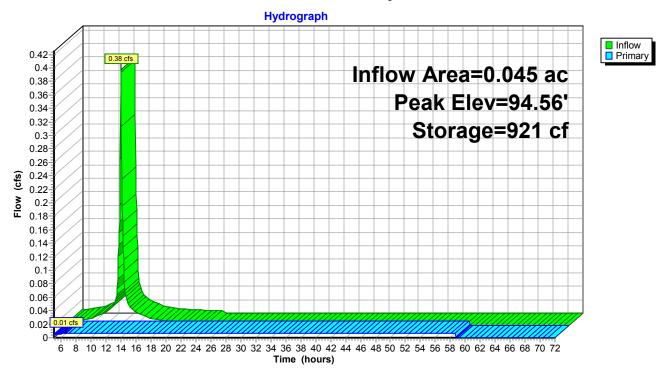
Outflow = 0.01 cfs @ 6.65 hrs, Volume= 0.031 af, Atten= 98%, Lag= 0.0 min

Primary = 0.01 cfs @ 6.65 hrs, Volume= 0.031 af

Routing by Stor-Ind method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 94.56' @ 17.78 hrs Surf.Area= 0 sf Storage= 921 cf

Plug-Flow detention time= 1,159.9 min calculated for 0.031 af (100% of inflow)

Center-of-Mass det. time= 1,159.4 min (1,919.4 - 760.0)


Volume	Inv	ert Avail.Sto	rage	Storage Description
#1	88.0	60'	41 cf	Custom Stage Data Listed below
Elevation (fee		Cum.Store cubic-feet)		
88.6	60	0		
89.1	10	46		
94.4	13	900		
94.6	69	941		
Device	Routing	Invert	Outl	et Devices
#1	Primary	0.00'	Spe	cial & User-Defined
	,			r. (feet) 88.60 88.61 89.10 94.43 94.69
			Disc	th. (cfs) 0.000 0.007 0.007 0.007

Primary OutFlow Max=0.01 cfs @ 6.65 hrs HW=88.61' (Free Discharge)

1=Special & User-Defined (Custom Controls 0.01 cfs)

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 3L: Infiltration System 3

Prepared by Gala Simon Associates

Page 13

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 4L: Infiltration System 4

Inflow Area = 0.069 ac, Inflow Depth > 8.29" for 100-Year Storm event

Inflow = 0.58 cfs @ 12.09 hrs, Volume= 0.048 af

Outflow = 0.01 cfs @ 6.40 hrs, Volume= 0.048 af, Atten= 98%, Lag= 0.0 min

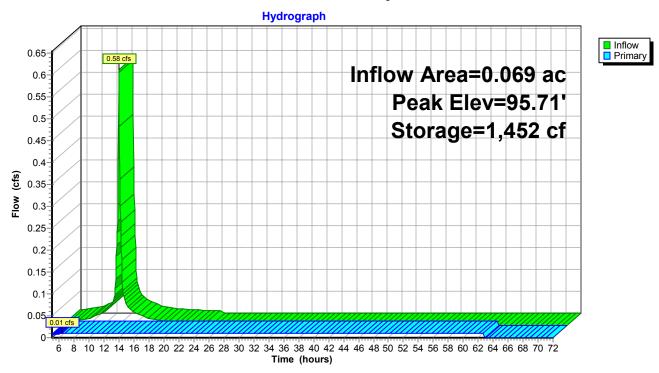
Primary = 0.01 cfs @ 6.40 hrs, Volume= 0.048 af

Routing by Stor-Ind method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 95.71' @ 18.04 hrs Surf.Area= 0 sf Storage= 1,452 cf

Plug-Flow detention time= 1,281.6 min calculated for 0.048 af (100% of inflow)

Center-of-Mass det. time= 1,281.1 min (2,041.0 - 760.0)

Volume	In	vert Ava	il.Storage	Storage Description
#1	90	.10'	1,581 cf	Custom Stage Data Listed below
Elevation	on	Cum.Store		
(fee	et)	(cubic-feet)		
90.1	10	0		
90.6	60	68		
95.9	93	1,511		
96.1	19	1,581		
Device	Routing	ı In	vert Out	let Devices
#1	Primary	′ (•	ecial & User-Defined


Elev. (feet) 90.10 90.11 90.60 95.93 96.19 Disch. (cfs) 0.000 0.010 0.010 0.010 0.010

Primary OutFlow Max=0.01 cfs @ 6.40 hrs HW=90.11' (Free Discharge) 1=Special & User-Defined (Custom Controls 0.01 cfs)

Page 14 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 4L: Infiltration System 4

Prepared by Gala Simon Associates

Page 15

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 5L: Infiltration System 5

Inflow Area = 0.071 ac, Inflow Depth > 8.29" for 100-Year Storm event

Inflow = 0.60 cfs @ 12.09 hrs, Volume= 0.049 af

Outflow = 0.01 cfs @ 6.30 hrs, Volume= 0.049 af, Atten= 98%, Lag= 0.0 min

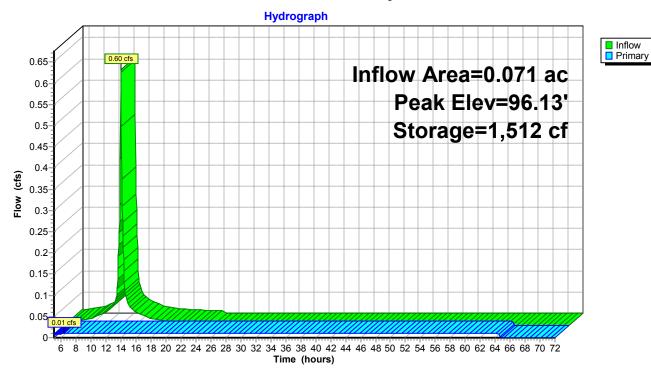
Primary = 0.01 cfs @ 6.30 hrs, Volume= 0.049 af

Routing by Stor-Ind method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 96.13' @ 18.24 hrs Surf.Area= 0 sf Storage= 1,512 cf

Plug-Flow detention time= 1,334.7 min calculated for 0.049 af (100% of inflow)

Center-of-Mass det. time= 1,334.2 min (2,094.1 - 760.0)

Volume	Inve	t Avail.Sto	rage Storage Description
#1	90.30)' 1,58	81 cf Custom Stage Data Listed below
Elevatio		um.Store ubic-feet)	
90.3	80	0	
90.8	80	68	
96.1	3	1,511	
96.3	89	1,581	
Device	Routing	Invert	Outlet Devices
#1	Primary	0.00'	Special & User-Defined Elev. (feet) 90.30 90.31 90.80 96.13 96.39


Disch. (cfs) 0.000 0.010 0.010 0.010 0.010

Primary OutFlow Max=0.01 cfs @ 6.30 hrs HW=90.31' (Free Discharge) 1=Special & User-Defined (Custom Controls 0.01 cfs)

Page 16 3/1/2017

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 5L: Infiltration System 5

Prepared by Gala Simon Associates

Page 17

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

3/1/2017

Pond 6L: Infiltration System 6

Inflow Area = 0.049 ac, Inflow Depth > 8.29" for 100-Year Storm event

Inflow = 0.41 cfs @ 12.09 hrs, Volume= 0.034 af

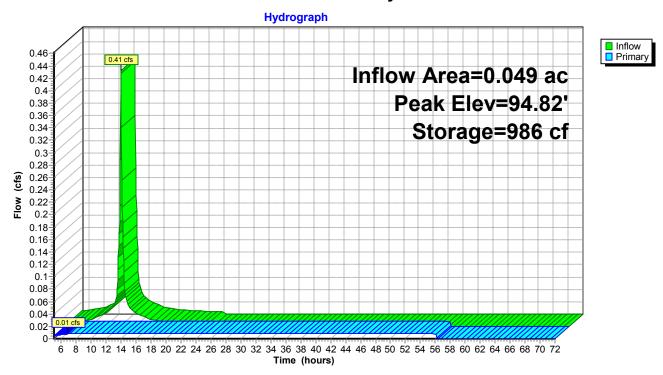
Outflow = 0.01 cfs @ 6.85 hrs, Volume= 0.034 af, Atten= 98%, Lag= 0.0 min

Primary = 0.01 cfs @ 6.85 hrs, Volume= 0.034 af

Routing by Stor-Ind method, Time Span= 5.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 94.82' @ 17.60 hrs Surf.Area= 0 sf Storage= 986 cf

Plug-Flow detention time= 1,086.4 min calculated for 0.034 af (100% of inflow)

Center-of-Mass det. time= 1,086.5 min (1,846.5 - 760.0)


Volume	Inv	ert Avail.S	Storage	Storage Description
#1	89.	20' 1	,072 cf	Custom Stage Data Listed below
Elevation (fee		Cum.Store cubic-feet)		
89.2		0		
89.7	70	57		
95.0)3	1,025		
95.2	29	1,072		
Device	Routing	Inve	rt Outl	et Devices
#1	Primary	0.0	0' Spe	cial & User-Defined

Elev. (feet) 89.20 89.21 89.70 95.03 95.29 Disch. (cfs) 0.000 0.008 0.008 0.008 0.008

Primary OutFlow Max=0.01 cfs @ 6.85 hrs HW=89.21' (Free Discharge) 1=Special & User-Defined (Custom Controls 0.01 cfs)

HydroCAD® 8.00 s/n 004688 © 2006 HydroCAD Software Solutions LLC

Pond 6L: Infiltration System 6

Appendix D Groundwater Mounding Analysis (Hantush Method)

Test Hole	Evidence of GW/Ledge	Elevation (ft.)
1	Mottling	84.4
2	Mottling	84.5
3	Boulder Refusal	83.7
4	None, depth to bottom of test pit	82.4

Infiltration System	ESGWT (ft.)	Bottom of System (ft.)	Δ (ft.)
1	84.5	89.8	5.3
2	84.5	86.5	2.0*
3	82.4	88.6	6.2
4	82.4	90.1	7.7
5	82.4	90.3	7.9
6	83.7	89.2	5.5
7	84.5	86.5	2.0*
Detention/Infiltration Pond	84.4	88.5	4.1

Infiltration system 2, and 7, are within four feet of the estimated seasonal high groundwater table, therefore they require a groundwater mounding analysis per the Massachusetts Stormwater Handbook.

Infiltration System 2

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

		use consistent unit	ts (e.g. feet & days or inches & hours)	Conversio	100		
out Values				inch/hour	50.		
4.2000	R		ation) rate (feet/day)	0.	67	1.33	
0.330	Sy	Specific yield, Sy	(dimensionless, between 0 and 1)				
45.00	K	Horizontal hydra	ulic conductivity, Kh (feet/day)*	2.	00	4.00	In the report accompanying this spreadsheet
10.500	x	1/2 length of bas	sin (x direction, in feet)				(USGS SIR 2010-5102), vertical soil permeabili
10.500	y	1/2 width of bas	in (y direction, in feet)	hours	days		(ft/d) is assumed to be one-tenth horizontal
1.000	t	duration of infilt	ration period (days)		36	1.50	hydraulic conductivity (ft/d).
7.000	hi(0)	initial thickness	of saturated zone (feet)				
8.607	h(max)	maximum thickn	ess of saturated zone (beneath center	of basin at end	of infiltr	ation	period)
1,607	Δh(max)	maximum groun	dwater mounding (beneath center of I	pasin at end of	infiltratio	n peri	od)
ound- Di	istance from						
ter ce	enter of basin						
	x direction, in						
unding, in in							
unding, in in	x direction, in	D. Cala					
unding, in in t fe	x direction, in eet	Re-Calc	ulate Now				
unding, in in t fe 1.507	x direction, in eet	Re-Calc	ulate Now				
unding, in in t fe 1.507 0.817	x direction, in set	Re-Calc		450 5			
unding, in in t fe 1.507 0.817 0.324	ox direction, in seet 0 20 40	Re-Calc	ulate Now Groundwater Mo	unding, in	feet		
unding, in in t fe 1.607 0.817 0.324 0.200	0 20 40 50	Re-Calc	Groundwater Mo	unding, in	feet		
unding, in in t fe 1.607 0.817 0.324 0.200 0.121	0 20 40 50 60		Groundwater Mo	unding, in	feet		
ounding, in in t fe 1.507 0.817 0.324 0.200 0.121 0.072	0 20 40 50 60 70	1.80	Groundwater Mo	unding, in	feet		
unding, in in t fe 1.607 0.817 0.324 0.200 0.121 0.072 0.042	0 20 40 50 60 70 80	1.80	Groundwater Mo	unding, in	feet		
ounding, in in et fe 1.607 0.817 0.324 0.200 0.121 0.072 0.042 0.025	0 20 40 50 60 70 80 90	1.80 1.60 1.40	Groundwater Mo	unding, in	feet		
ounding, in in fet fet 1.607 0.817 0.324 0.200 0.121 0.072 0.042 0.025 0.015	0 20 40 50 60 70 80 90	1.8t 1.6t 1.4t 1.20 1.00	Groundwater Mo	unding, in	feet		
unding, in in t fe 1.607 0.817 0.324 0.200 0.121 0.072 0.042 0.025 0.015	0 20 40 50 60 70 80 90	1.8t 1.6t 1.4t 1.20 1.00 0.8t	Groundwater Mo	unding, in	feet		
ounding, in in t fe 1.607 0.817 0.324 0.200 0.121 0.072 0.042 0.025 0.015	0 20 40 50 60 70 80 90	1.80 1.60 1.40 1.20 1.00 0.80 0.60	Groundwater Mo	unding, in	feet		
ounding, in in fet fet 1.607 0.817 0.324 0.200 0.121 0.072 0.042 0.025 0.015	0 20 40 50 60 70 80 90	1.8t 1.6t 1.4t 1.20 1.00 0.8t	Groundwater Mo	unding, in	feet		

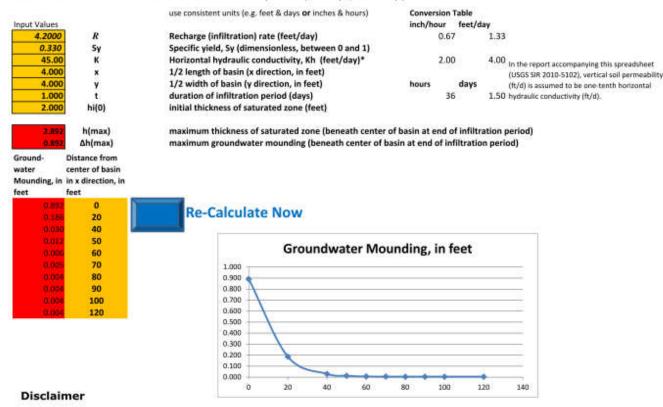
60

120

140

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.


Results from the Hantush analysis for Infiltration System 2, shown above, reveal that ground water will rise 1.607 feet beneath the system. Therefore, even though the system is less than four feet from the ESGWT, the groundwater will not reach the bottom of the infiltration system via mounding.

Infiltration System 7

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (5y), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

Results from the Hantush analysis for Infiltration System 7, shown above, reveal that ground water will rise 0.892 feet beneath the system. Therefore, even though the system is less than four feet from the ESGWT, the groundwater will not reach the bottom of the infiltration system via mounding.

Appendix E Rip-Rap Sizing Calculations

Rip-Rap Protection at Detention Pond Outlet

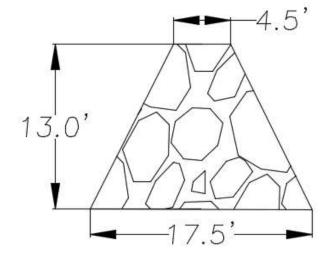
Outlet Elevation = 87.9 100-year elevation of isolated area = 86.5 $TW_{\min} = 0$

$$D_o = 18" = 1.5'$$

$$W_1 = 3D_0 = 4.5$$

$$D_o/2 = 0.75'$$

Since, $TW < D_o/2 = 0.75'$


$$L_a = ((1.8)*Q)/(D_o \land 3/2) + 7D_o$$

$$Q = 2.52 \text{ cfs}$$

$$L_a = ((1.8*2.52)/(1.5^1.5)) + 7*1.5 = 13.0$$

Since, TW
$$< D_o/2 = 0.75'$$

$$W_2 = 3D_o + L_a = 3(1.5) + 13 = 17.5$$

Rip-Rap Protection at Detention Pond Inlet

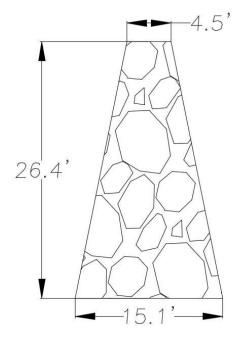
Inlet Elevation = 88.5 100-year elevation of isolated area = 91.6 TW = 3.1

$$D_0 = 18" = 1.5'$$

$$W_1 = 3D_0 = 4.5$$

$$D_0/2 = 0.75'$$

Since, $TW > D_o/2$


$$L_a = (3Q)/(D_o \land 3/2) + 7D_o$$

$$Q = 9.74 \text{ cfs}$$

$$L_a = ((3*9.74)/(1.5 \land 1.5)) + 7 * 1.5 = 26.4$$

Since, $TW > D_o/2$

$$W_2 = 3D_0 + 0.4 * L_a = 3(1.5) + 0.4(26.4) = 15.1$$

Apron Material

 d_{50} = median stone diameter

$$d_{50} = (0.02 * Q^{(4/3)}) / (TW * (D_0))$$

$$d_{50} = (0.02 * 9.74 \land (4/3)) / (3.1 * (1.5))$$

$$d_{50} = 0.089' = 1.07$$
"

Use 6" diameter stone, minimum on rip-rap aprons

^{*}Empirical equations obtained from, *Design and Construction of Urban Stormwater Management Systems*. New York: American Society of Civil Engineers, 1993. p 351-354. Print.

Rip-Rap Basin for Cuvert Outlet

$$D_0 = 18" = 1.5'$$

Minimum Dissipator Pool Length = $3D_0 = 4.5$ '

Minimum Apron Length = $D_0 = 1.5$ '

Basin Material

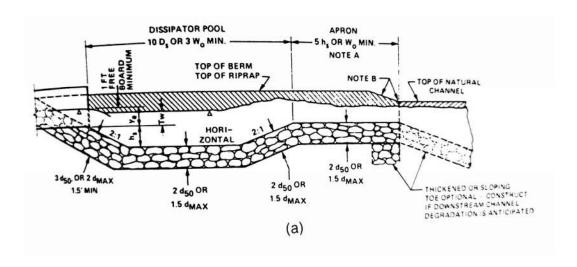
 d_{50} = median stone diameter

$$Q = 20.46 \text{ cfs}$$

$$TW = 88.13-85.70 = 2.43$$

$$d_{50} = (0.02 * Q^{(4/3)}) / (TW * (D_0))$$

$$d_{50} = (0.02 * 20.46 \land (4/3)) / (2.43 * (1.5))$$


$$d_{50} = 0.31' = 3.73$$
"

Use 6" diameter stone, minimum

 h_s/d_{50} must be >/= 2

$$h_s = 1.0'$$
; $h_s/d_{50} = 2$

Minimum thickness of rip-rap base = $3d_{50} = 1.5$ '

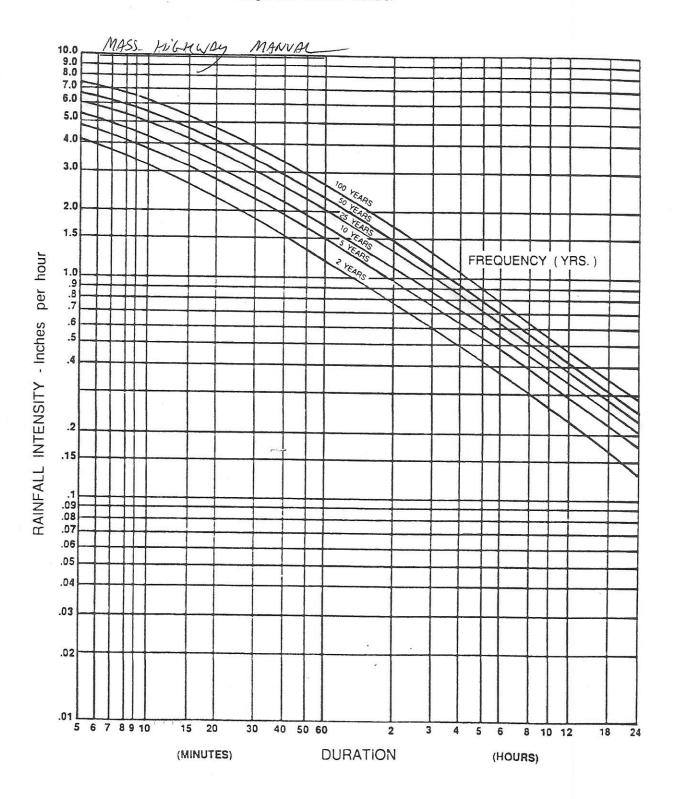
*Figure 9.18 from, Design and Construction of Urban Stormwater Management Systems. New York: American Society of Civil Engineers, 1993. p 354, 360-361. Print.

Appendix F Stormwater Pipe Sizing Calculations

TABLE 1: PIPE SIZING (10 YEAR RETURN PERIOD)

		1		Ī			DMHN		c34	033		DMM		C32	001	From
			5				560.		DMNZ	なみれる		DMHZ		DMHI	DWHI	To
	T T			T					0-19	0.21				0.19	0.19	A(ac.)
		1	·				-		0,9	0,9	***************************************			0,9	0,9	C
7.		2			v				0.16	0.19				41.0	41.0	CA
							0.69					0,34	:			SCA
				1			16.9		ō	0		7		0	0	Te
																ΣTc
							4.0		4	A. ev		4.3		4.	4 2	I
							2.97					1.46		24,0	64.0	Q
	induit.					-	00	- Company	2	2		12		12	72	۵
							0.005	A STATE OF THE PROPERTY OF THE PARTY OF THE	10.0	0,016		0.01		0.012	0,01	50
							110.0		0.611	110,0		0,611		0.011	0,611	n
				1	.,		00 CO		4.2	5.3		かな		4.6	4.7	Qf
							5.0		57.4	6.8		5,4		5.9	5.4	VÍ
							50	Notice of the last	5	0.		233		ō	7	L
							0,25		0.14	0.14	100	2.23		0,0	21.0	Fall
				1			89.34		89.48	89.48		47.57		91.69	91.69	Iup
							89,09		39.34	89.34		89.34	,	45.16	45.16	Ilow
			5				93,00		12.92	92.92		95.30		95,10	95.10	Rim

SMOOTH PIPE


V(full) = Sqrt Slope * V(chart)

Q(full) = Sqrt Slope * Q(chart)

MANNING FLOW FORMULA

V = 1.486 * R(2/3) * S(1/2) / nQ = 1.486 * A * R(2/3) * S(1/2) / n

=,010	DIA	n =	$n = 0.011 \mid n = 0.012 \mid n = 0.013 \mid$							AREA	DIA
1 9	in.		QQ	V	Q		V	Q		sf	in.
	3 4 5	21.3 25.8 29.9	1.04 2.25 4.08	19.5 23.6 27.4	0.96 2.06 3.74		18.0 21.8 25.3	0.88 1.90 3.45		0.049 0.087 0.136	3 4 5
	6 8 10	33.8 40.9 47.5	6.63 14.3 25.9	31.0 37.5 43.5	6.08 13.1 23.7		28.6 34.6 40.2	5.61 12.1 21.9		0.196 0.349 0.545	6 8 10
9 4 C.3 3.4 84 1.5 137	12 15 18	53.6 62.2 70.3	42.1 76.3 124	49.1 57.0 64.4	38.6 70.0 114		45.4 52.6 59.4	35.6 64.6 105		0.785 1.23 1.77	12 15 13
3, 6294.2	21 24 27	77.9 85.1 92.1	187 267 366	71.4 78.0 84.4	172 245 336		65.9 72.0 77.9	158 226 310	300	2.41 3.14 3.98	21 24 27
3.7 533.6	33	98.8 105 112	485 625 788	90.5 96.5 102	444 573 723		83.6 89.0 94.4	410 529 667		4.91 5.94 7.07	30 33 36
	42 48 54	124 135 146	1,189 1,698 2,324	113 124 134	1,090 1,556 2,130		105 114 124	1,006 1,436 1,966		9.62 12.6 15.9	42 48 54
	60 66 72	157 167 177	3,078 3,969 5,005	144 153 162	2,821 3,638 4,588		133 141 150	2,604 3,358 4,235		19.6 23.8 28.3	60 66 72
3	78 84 90	187 196 205	6,196 7,550 9,075	171 180 188	5,680 6,921 8,319		158 166 174	5,243 6,388 7,679		33.2 38.5 44.2	78 84 90
s .	96 108 120	214 232 249	10,779 14,757 19,544	197 213 228	9,881 13,527 17,915		181 196 211	9,121 12,486 16,537		50.3 63.6 78.5	96 108 120

Intensity — Duration — Frequency Curve for Boston, MA